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SYNTHESIS REPORT UPDATING

This volume represents an INTERIM edition of the

Northeast Gulf Alaska (NEGOA) Synthesis Report and is

intended to present a multidisciplinary overview of

information relevant to possible Alaskan Outer Conti-

nental Shelf oil and gas development. OCSEAP-supported

research is still continuing in the NEGOA region,

making additional relevant information continually

available.

In order to assist with this updating procedure,

it is requested that the users of this report inform

the following of major omissions or errors or of any

new relevant information:

OMPA Alaska Office
P. O. Box 1808

Juneau, Alaska 99802
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Expeditious development of the Outer Continental

Shelf (OCS) is essential to energy requirements of the

United States. The OCS oil and gas deposits may pro-

vide a national source of petroleum during a time when

it is greatly needed. In each OCS area for which

development is proposed, extensive environmental

studies must be conducted before such development can

safely proceed. As manager of the Alaskan Outer Con-

tinental Shelf leasing program, the Bureau of Land

Management (BLM) has asked the National Oceanic and

Atmospheric Administration (NOAA) to conduct the Outer

Continental Shelf Environmental Assessment Program

(OCSEAP) .

This program focuses on several lease areas on the

Alaskan Outer Continental Shelf, ranging from the sub-

arctic Northeast Gulf of Alaska to the arctic Beaufort

Sea. This vast geographic area encompasses extreme

environmental conditions. The harsh environment and

resultant severe working conditions are largely respon-

sible for the fact that much less is known about the

marine environment of ,the Alaskan OCS than about any

other shelf and coastal area of the United States. The

existence of oil under the shelf, the demand for new

domestic sources of energy, and the recognition of the

lack of basic environmental information have accented

the need for a well-developed research program.

AI-I essential part of a research program is the

reporting of its results. OCSEAP is reproducing and

widely distributing the annual reports received from

each project as well as some specialized technical

summaries. A listing of these reports, as well as the

reports themselves, may be secured from OCSEAP’s

Editor, NOAA, MP3, Boulder, CO 80303. More impor-

tantly, OCSEAP is producing synthesis reports like this

one for each lease area. This current synthesis or-

ganizes all available marine environmental information

pertinent to OCS development for the given lease area,

tailoring the presentation to needs of the users.

A synthesis chapter is provided to tie the scien-

tific and technical information chapters together. It

presents a picture of the operation and vulnerability

of the environmental system in such a way that the

user, or decision maker, will have a sound basis for

tract selection and location of pipelines or other

facilities, will be aware of stipulations and regula-

tions, and will know where problems exist.

The task of gathering, selecting, analyzing, and

presenting needed pertinent information for the lease

areas will take years to accomplish; yet the user needs

information immediately. In order to resolve this

dilemma and to secure a wide review of the information”

before the work is finished, OCSEAP provides interim

syntheses, intending to update them regularly to incor-

porate data from current studies. These reports will

be discussed at future meetings with OCSEAP staff and

contract scientists to expedite the updating. The

final synthesis, to be published when the OCSEAP scien-

tific community has completed its studies in this lease

area, will thus be a product tailored to current and

future needs of decision makers.
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CHAPTER 1 INTRODUCTION Specific objectives of the BLM environmental OCSEAP divided the evaluation of potential effects

J. G. Strauch, Jr., SAI

Origins of the Program

The Alaskan Outer Continental Shelf Environmental

Assessment Program (OCSEAP) originated in May 1974,

when the Bureau of Land Management (BLM), manager of

the Outer Continental Shelf (OCS) oil leasing program,

requested that the National Oceanic and Atmospheric

Administration (NOAA) begin an environmental assess-

ment program in the Northeastern Gulf of Alaska

(NEGOA),  in anticipation of possible oil and gas lease

sales in 1976. In October 1974, BLM requested that the

program be expanded during 1975 and 1976 to include

five additional areas of the Alaskan continental shelf.

In response to a further request by BLM in December

1975, OCSEAP was expanded to include the northern

Bering Sea, Chukchi Sea, and lower Cook Inlet. The

Program Development Plan (PDP) (NOAA, 1976) outlined

studies in progress and presented study plans for nine

proposed lease areas of the Alaskan OCS. Since then

the North Aleutian Shelf and Navarin Basin have been

added to the lease schedule (Fig. 1.1). .*

Objectives of OCSEAP

The National Environmental Policy Act of 1969

called for the protection of the marine and coastal

environment. The primary objective of OCSEAP is to

obtain information on the OCS environment so that

preventive or corrective measures can be taken before

serious or irreversible damage to the environment

occurs.

studies program for all OCS areas are:

o To provide information about the OCS environ-
ment that will enable the Department of the
Interior and BLM to make sound management
decisions regarding the development of min-
eral resources on the federal OCS.

o To gather information that will enable BLM to
identify elements of the environment likely
to be affected by oil and gas exploration and
development.

o To establish a basis for predicting the ef-
fects on the environment of OCS oil and gas
activities.

o To measure the effects of oil and gas explo-
ration and development on the OCS environ-
ment. These data may result in modification
of leasing and operation regulations to
permit efficient recovery of resources with
maximum environmental protection.

of Ocs
tasks:

A.

B.

c.

D.

E.

F.

oil and gas developments into six areas or

Existing contaminants: Determination of
background levels of potential contaminants
commonly associated with oil and gas develop-
ment.

Sources: Identification of probable sources
of contaminants and environmental distur-
bances likely to accompany oil and gas explo-
ration and development.

Hazards: Identification and assessment of
environmental hazards which may affect petro-
leum exploration and development.

Transport: Determination of how contaminants
move through the environment and how they are
altered by physical, chemical, and biological
processes.

Receptors: Identification of the biological
populations and ecological systems likely to
be affected by petroleum exploration and
development.

Effects: Determination of the effects of
hydrocarbon and trace metal contaminants on
ecological systems and their component organ-
isms.

Previous synthesis reports were organized accord-

ing to the list of tasks. At the Kodiak Synthesis

Meeting, Kodiak, Alaska, May 1979, it became evident

that this organization hindered use of the reports.

Therefore, the present report is organized along more

traditional lines. First the physical characteristics

of the environment are discussed, then the biology,

beginning with microbes and ending with ma~als. The

Introduction 3
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disciplinary chapters address the OCSEAp tasks as

follows:

Chapter 2 Geologic Hazards: Task C, Hazards,

Chapter 3 Circulation: Task D, Transport,

Chapter 4 ,Hydrocarbons  and Metals: Task A,

Contaminants,

Chapters 5-10 Biology: Task E, Receptors.

Chapter 11 deals with potential petroleum development

(Task B), and Chapter 12 is a summary of current know-

ledge of the lease area. Material on Task F (Effects)

has been integrated into the other chapters.

The tracts sold in OCS Sale No. 39 are shown’in

Fig. 1.2. The results of exploratory drilling in the

sale area have been disappointing> and there is little

probability that further drilling will be done (see

Chapter 11 for details).

A second sale, Sale No. 55, is now Planned in

NEGOA . The tracts which will be offered (Fig. 1.2)

cover an area of about 480,000 hectares.

Each lease block contains 2,304 hectares. For

purposes of identification and sale the blocks have

been numbered, starting with the first tier north of

the equator as “N l.” The first range of blocks west

of the central meridian of each UTM zone is designated

“E 100.+’ Thus, a block numbered “N-200-E 96” would be

the 200th block north of the equator and the 5th block

west of the central meridian of the respective UTM

zone.

jl

IA7Q lARO 145° 144° 143° 142° 141° 140° 139” 138”

jlc

50

i9

~ Tracts proposed for sale 55

> ‘2000 ~

\\

i9

147” 146” 145” 144° 143” 142” 141” 140° 139”

ligure 1.2 NEGOA shelf proposed lease areas (USDI, 1976, 1980b).

Figure 1.1 Proposed lease areas of the Alaskan outer
continental shelf (USDI, 1980a).
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Chapter 2 GEOLOGICAL HAZARDS

R. E. Peterson, SAI

2.1 INTRODUCTION

2.1.1 Relevance of geological hazards study

The continental shelf around the Gulf of Alaska,

the Alaska Peninsula, and the Aleutian Islands is

situated in a dynamic tectonic environment. Several

prominent crustal features are associated with this

setting: the deep Aleutian Trench and Aleutian

volcanoes which result from the underthrusting of the

oceanic plate; rugged mountain ranges produced by

compressive forces generated during the collision of

the two plates; and major fault systems, which reveal

the structural failure of crustal rock as the motion

can no longer be accommodated by plastic deformation.

The most immediate and probably the most

spectacular hazard posed by this tectonic activity is

the occurrence of earthquakes. Earthquakes have been

particularly destructive in heavily populated areas,

due to the variety of effects produced. Open fissures

and cracks with offsets along fences and roads are

dramatic, but the conflagrations resulting from

ruptured natural gas lines, collapsed gasoline storage

tanks, and broken electrical power lines are far more

destructive. Structural failure and weakening of oil

pipelines, platforms, and buildings may be caused by

soil liquefaction induced by earthquake shaking.

The risk of destruction by earthquakes is directly

proportional to the extent of human development in a

region (Jackson and Burton, 1978; Okrent, 1980). The

probability that an earthquake will occur at a

particular location may be reasonably forecast by

seismologists; the risk posed to life and property is

much

ment

dire

pipe

more difficult to evaluate. The financial commit-

in equipment, the increase in population, and the

environmental consequences of a blowout or major

ine break are important reasons for evaluating the

earthquake risk to petroleum industry development on

the Gulf of Alaska continental shelf.

Hazards due to tectonic activity are not the only

ones resulting from geological processes. Rapid

erosion and deposition of seafloor sediment may damage

pipelines, for instance, as may slumping and sliding of

unstable slopes. Dispersion of sediment in the water

column , along the seafloor, and along coast lines may

influence the fate of spilled oil. Knowledge of the

presence and location of gas-charged sediments is

important, since encountering such deposits during

offshore platform construction and drilling operations

is a serious hazard (Thompson, 1979).

A thorough understanding of geological processes

in this region of anticipated petroleum industry

development is essential for a complete evaluation of

the risk posed to the development by the natural

environment.

2.1.2 Geologic setting of NEGOA

Interaction between the Pacific and North American

Iithospheric plates has caused many of the

physiographic features and tectonic processes found in

NEGOA . The lease areas are situated in a transition

zone where plate interaction shifts from primarily

strike/slip faulting on the southeast to thrust

faulting on the west (Fig. 2.1). These plates are

converging at about 6 cm/yr, and the convergence

manifests itself as structural deformation and

accompanying seismic and volcanic activity.

Figure 2.1 Plate tectonic relationships in the NE
Pacific Ocean (from Lahr and Stephens, 1979). Star
indicates epicenter of 28 February 1979 Mt. St. Elias
earthquake.

The complexity of the interaction in this portion

of the plate boundary has resulted in several tectonic

models for the transition zone (e.g., Lahr and Plafker,

1980; Perez and Jacob, 1980). The details of these

models are beyond the scope of this synthesis, but both

describe how the strike/slip motion on the east

transforms into

north and west.

the Yakutat and

transition zone

thrust faulting and subduction on the

Two rigid blocks of crustal material,

Wrangell blocks, are postulated in the

(Lahr and Plafker, 1980). Most of the

tectonic deformation in the region occurs along the

boundaries of these blocks as the convergence of the

Pacific and North American plates is accommodated.

Figure 2.2 shows the principal tectonic features of the

region.

Geological Hazards 11
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The topography and sediments of the NEGOA shelf

and adjacent shoreline reflect the strong influence of

glacial activity (Molnia and Carlson, 1980). The

coastal region, the shelf , and parts of the continental

slope were all covered by ice during the Wisconsin

glaciation, which occurred between 35,000 to 11,000

years before present (Sharma,  1979), During glaciation

of the shelf many of the faulted and folded structures

in sedimentary units were truncated, and considerable

amounts of coarse-grained gravels and sands were

deposited some distance offshore of the present shore-

1 ine. As sea level rose, these materials became

relict deposits, since the less energetic deepwater

hydrodynamic regime was no longer able to transport the

materials.

Several prominent topographic features influence

erosion, deposition, and transport of materials on the

NEGOA shelf. They include the Yakutat, Alsek, and

Cross Sound Sea Valleys, which may act as conduits to

transport modern glacial detritus offshore to the

continental slope. The Pamplona Ridge and Fairweather

Ground are structural highs which have little

accumulation of modern sediment. Figure 2.3 is an

index map for names and locations of important

physiographic  features.

2.2 SEISMICITY

2.2.1 Earthquake catalogues  and detection capability

Of the more recent catalogues  of earthquakes which

include data for Alaska (Duds, 1965; Tobin and Sykes,

1966 and 1968; Roth<, 1969; Sykes, 1971; Kelleher et

al., 1973), the file maintained by NOAA’s Environmental

Data Services in Boulder, Colorado, is in general the

most complete. Data for this file are obtained from a

147° 146° 145° 144° 143° 142° 141” 140° 139” 138°

I L,?2000 m FAIRWEATHER I

1 GROUND I
147° 146° 145° 144” 143° 142° 141° 140° 139”

Figure 2.3 Index map for major physiographic features of NEGOA.

variety of sources which are described by Meyers and the variation in accuracy of identifying epicenter

von Hake (1976). Several unavoidable limitations of locations.

the file are the short time period for which The recent translation of old Russian documents

instrumental records exist, the heterogeneity of mag- has extended the earthquake record in Alaska back to

nitude determinations for some parts of the file, and 1784 (Sykes et al., 1980). In their attempt to better

Geological Hazards 13
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the epicenter plot boundaries for NEGOA. Hence, nearly

all earthquakes in this region have a shallow focal

depth.

Figure 2.7 shows the distribution of shallow and

deep seismicity as detected by the local Alaskan

network, which is sensitive to events of much smaller

magnitude than those displayed in Fig. 2.6. Note that

the period of observation is considerably shorter for

the Alaskan network; the plots include data from 1976

to early 1978.

;1
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Figure 2.7 Epicenter plot of earthquakes recorded by Alaskan network, which started operating in 1976. Plot
produced by NOAA/EDS.
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Table 2.1 List of earthquakes of magnitude 6 or greater that have occurred in NEGOA between 1899 and 1979. The 2.2.3 Major earthquakes affecting NEGOA
epicenters are plotted in Fig. 2.8. The maximum Mercalli intensity observed for the earthquake is also listed
(refer to Table 2.2 for scale). Data sources in capital letters are from the NOAA/EDS earthquake file; those in
small letters are individual references. Several very large earthquakes have occurred in

the vicinity of the proposed lease areas since about

Data Year Mo Day Hr Min Sec Lat Long Focal Magnitudes Int the turn of the century. Accounts of four of these
source~
(No. on
Fig. 2.8)

(Universal time)
depth ----------------------------------- max
(km) Body Surface Unspeci-  Local quakes are found in “Earthquake History of the United

wave wave fied (Richter) States” (Coffman and von Hake, 1973; Coffman, 1979).

EQH (1)
CFR (2)
cm (3)
EQH (4)
G-R (5)
G-R (6)
G-R (7)
G-R (8)
G-R [9)
G-R (10)
G-R (11)
USE (12)
USE (13)
CGS (14)
rot (15)
rot (16)
CGS (17)
CGS (18)
CGS (19)
rot (20)
CGS (21)
rot (22)
rot (23)
rot (24)
CGS (25)
rot (26)
USE (27)
USE (28)
USE (29)
CGS (30)
ERL (31)
ERL (32)
lah (33)

1899
1899
1899
1900
1908
1912
1920
1927
1928
1944
1946
1952
1958
1958
1963
1964
1964
1964
1964
1964
1964
1964
1964
1964
1965
1965
1970
1970
1970
1970
1973
1973
1979

09
09
09
10
05
01
07
10
06
02
01
03
07
09
06
03
03
03
03
03
03
04
04
05
09
09
04
04
04
08
07
07
02

04
10
10
09
15
31
07
24
21
03
12
09
10
24
17
28
28
28
28
29
30
04
05
17
18
20
11
16
19
18
01
03
28

00
17
21
12
08
20
18
15
16
12
20
20
06
03
18
05
09
14
14
16
07
04
19
00
20
23
04
05
01
17
13
16
21

22
04
40
28
31
11
41
59
27
14
25
00
15
44
32
33
52
47
49
40
09
54
28
50
46
47
05
33
15
52
33
59
27

00.0
00.0
00.0
00.0
36.0
48.0
29.0
55.0
13.0
59.0
37.0
17.0
51.0
14.0
09.9
52.6
55.7
37.1
13.7
58.0
34.0
01.7
18.1
17.9
36.5
40.7
41.1
17.5
46.8
06.3
34.6
35.1
06.1

60.000N
60.000N
60. 000N
60.000N
59.000N
61.000N
61.000N
57 .500N
60. 000N
60.500N
59 ;250N
59.500N
58.600N
59.500N
60.500N
60. 200N
59.700N
60. 400N
60. 400N
59.700N
59.900N
60. lOON
60.200N
59.400N
59.400N
59.700N
59.700N
59.800N
59. 600N
60. 700N
57. 840N
57.980N
60. 640N

142.000W
142.000W
140.000W
142.000W
141.000W
147.500W
140.000W
137.000W
146.500W
137.500W
147.250W
136.000W
137.1OOW
143.500W
140.800W
146.200W
146.600W
146.500W
147.1OOW
147.000W
145.700W
146.700W
146.700W
142.700W
145.200W
143.400W
142.700W
142.600W
142.800W
145.384W
137.330W
138.021W
141.590W

25
25

25
25
80
25
25
25

50

20
30
10
10
15
15
40
15
35
5

19
7
7

20
16
33
33
15

5.50
5.70
5.80

5.60

5.30

5.20
5.50
5.80
5.60
6.10
6.OO

8.30
7.80
8.60
8.30
7.00
7.25
6.oO
7.10
7.00
6.50
7.20
6.00
7.90
6.25
6.oO
6.00
6.20
6.30
6.50
6.OO
6.20
6.10
6.OO
6.00
6.OO
6.00

6.2 6.20
6.8 6.80
6.0 5.50
5.9 6.00
6.7 6.70
6.0 6.40
7.7

XI
VII
XI

VII
VI
v

VI
VI

IV
v

XI

5.80 III
6.20 Iv
5.80
5.90 Iv

v
v

The following brief descriptions are from those

references unless otherwise noted.

In September 1899, two of the largest earthquakes

on record in Alaska occurred in the vicinity of Cape

Yakataga and Yakutat Bay. The magnitudes (Ms) were 8.5

and 8.4, respectively (Thatcher and Plafker, 1977) .

Large topographic changes accompanied the earthquakes;

in one area an uplift of about 14% m was observed. A

10-meter tsunami swept across Yakutat Bay, and

snowslides large enough to alter the movement Of

glaciers were generated. Fortunately, damage to life

and property was minimal, since the area was only

sparsely populated and essentially undeveloped. An

evaluation of data concerning thes e earthquakes

(Thatcher and Plafker, 1977) indicates that during a

13-month period from late 1899 extending into 1900,

there were four large earthquakes with magnitudes

between 7.8 and 8.5 in the Yakutat Bay-Kayak Island

region. In spite of these large events, those authors

suggest that not all of the accumulated stress in the

region was released by these events, unless a

significant amount of slow creep has occurred as well.

In July 1958 a major earthquake of magnitude (Ms)

$’Data sources:
7.9 which was apparently associated with movement on

EQH Coffman and von Hake (1973) CGS Coast and Geodetic Survey. This agency operated the the Fairweather Fault (Tocher, 1960; see Fig. 2.2 for

CFR Richter (1958) Preliminary Determination of Epicenter (PDE) program location) occurred near Lituya Bay. Effects described
G-R Gutenberg and Richter (1954) prior to 1970.
ERL Environmental Research Laboratory. This agency USE United States Earthquakes. Published annually by the as “moderate” (Davis and Sanders, 1960) occurred at

operated the PDE program between 1971 and 1973. Coast and Geodetic Survey and successor organizations Yakutat, 100 miles northwest of the epicenter,
rot Roth: (1969) from 1928 to 1972, and jointly by NOAA/USGS thereafter.
lah Lahr et al. (1980a) including damage to water and gasoline tanks,
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evaluating geological hazards in NEGOA, for it occurred

in the area between two previous large NEGOA

earthquakes: the 1964 Prince William Sound and 1958

Lituya Bay events. It represents stress release in a

“seismic gap,” with implications regarding the

recurrence of large earthquakes (Kelleher, 1970; Sykes,

1971; McCann et al., 1979; Lahr et al., 1980a; Lahr and

Plafker, 1980).

2.2.4 Seismic sea waves (Tsunamis)

Offshore earthquakes may produce displacements at

the seafloor which result in seismic sea waves, or

tsunamis. Seawater attenuates seismic wave energy much

Table 2.3 Tsunamis observed in NEGOA (modified from
Cox and Pararas-Carayannis, 1976). “Wave height” in
remarks column refers to maximum runup elevation on
beach or to measured amplitude at shoreline.

high. The NEGOA shoreline is exposed to tsunamis

generated anywhere in the Pacific, and especially to

those generated in the highly earthquake-prone

Aleutian/Alaska seismic belt.

2.2.5 Earthquake occurrence rates

In planning for future development, it is

important to make every effort to estimate the rate of

occurrence and the likelihood of future occurrence of

earthquakes of various magnitudes. While precise

prediction of the location, magnitude, and time of

large earthquakes is not yet possible, progress in

“forecasting” the location, general size (e.g., great,

large), and time of occurrence to within a few tens of

years has been made through the analysis of seismicity

gaps (McCann et al., 1979).

The seismic gap hypothesis suggests a higher

earthquake potential for those segments of lithospheric

plate boundaries which have experienced fewer large

earthquakes in the last three decades than adjacent

segments. It can be seen in Fig. 2.11 that the

aftershock zones of large earthquakes tend not to

mea o r  orlgm,
Location of earthquake, or
observation volcanic eruption Observations and remarks

Yakutat Bay

Lituya  Bay

Lituya  Bay

Yakutat Bay

1845
Ice fall in Yakutat Bay

100 deaths; similar waves
reported by legend

120 m wave height; cleared
trees and brush from shore-
l i n e .

24 m wave height.

1853 or 1854
Lituya Bay landsl ide

1874
Lituya Bay landsl ide

Tsunami originated in Disen-
chantment Bay; 10 m wave
h e i g h t ;  w a v e attenuated
rapid ly  in  outer  bay .

T r e e s  a n d  b r u s h  c l e a r e d  b y
waves between 1890-1899;  60
m wave p o s s i b l y due to
l a n d s l i d e t r i g g e r e d  b y
Yakataga earthquake.

Ice  fe l l  f rom Fal len  Glac ier
i n t o Disenchantment Bay;
seiche i n  R u s s e l l  F i o r d  o f
4+-6 m  a m p l i t u d e  c o n t i n u e d
for  one-hal f  hour .

T h r e e  w a v e s g e n e r a t e d  i n
Crillon  I n l e t ,  l a r g e s t  1 5 0
m;  c leared  trees  and shrubs .

0.2 m wave at  Yakutat; t h i s
w a s  t h e  d e s t r u c t i v e  “ G r e a t
(Eastern ) Aleutian Tsunami”
w h i c h  k i l l e d  5  a t  S c o t c h
Cap.

0.3 m wave at Yakutat; great
damage from tsunsmi a t
Kamcha tka.

0.4 m wave; this tsunami was
observed throughout the
North and S o u t h  P a c i f i c .

Wave generated b y  g i a n t
“ l a n d s l i d e  c l e a r e d  f o r e s t  o n
OPPOSite  s i d e  o f  f i o r d  to
525 m e levat ion;  wave 100 m
at  mouth o f  f iord ;  2  deaths ,
2  boats  destroyed.

10 Sep 1899
Msg.  8.6
Cape Yakataga earthquake

10 Sep 1899
Msg.  8.6
Cape Yakataga earthquake

Lituya Bay

less than geologic formations, allowing these waves to

travel great distances from their earthquake source at
L July 1905
Ice  fa l l  in  Yakutat B a y

Yakutat Bay

speeds of several

1977) . A tsunami

during approach to

build considerably.

hundred km/hr in deep water (Murty,

slows as it enters shallower water

a shoreline, and the wave height may

An extensive tsunami warning system

Lituya Bay

Yakutat

27 Ott 1936
Lituya Bay landsl ide

1 Apr 1946
Msg.  7.4
Eastern Aleut ians

developed at the Palmer, Alaska, Seismological Center

can issue warnings in response to the occurrence of a

major earthquake. Prediction of the arrival time of a

tsunami is based on the distance between the epicenter

and the location along the Alaskan coastline (Cox and

Pararas-Carayannis, 1976).

Tsunamis can also result from major landslides

which enter ocean areas or bays, as has occurred in

Lituya Bay in NEGOA several times (Coffman and von

Hake, 1973).

Table 2.3 summarizes tsunamis observed in NEGOA

and illustrates the variety of possible sources. The

tsunami risk for offshore structures is low, due to the

small wave heights attained during travel through deep

water. However, the risk of damage to pipelines in

shallow water and to shoreline facilities in bays is

Yakutat

Yakutat

Lituya Bay

5 NOV  1952
Msg.  8.25
East  Kamchatka

9 Mar 1957
Unimak Is .  ,  Aleut ians

overlap; the areas separating adjacent aftershock

have been designated “seismic gaps.” Studies

revealed several gaps along the Aleutian Island

and the southern Alaskan borders (Kelleher,

zones

have

chain

1970;

9 July 1958
Msg.  7.9
Lituya Bay

Sykes, 1971; McCann et al.,

1980) .

A seismic gap has been

roughly the transition between

1979; Lahr and Plafker,

9 July 1958
Msg .  7.9
Lituya Bay

0 . 2  m  w a v e  g e n e r a t e d  b y
crustal d isp lacement  dur ing
earthquake (not  due  to  land-
slide in Lituya Bay) .

0 .9  m wave at  Yakutat; t h i s
was the Great Chile tsunami,
which resulted in tremendous
d a m a g e  a n d  c a s u a l t i e s  i n
C h i l e , Hawaii, and Japan.

Wave heights  o f  3 .7  and 2 .2
m a t C a p e  Yakataga a n d
Yakutat ,  respect ive ly ;  major

Yakutat

identified in NEGOA at

the underthrust zone and
Yakutat 22 May 1960

Mag 8.5
Southern Chi le the strike-slip zone between Icy Bay and ‘Kayak Island.

Since the gap was recognized prior to the 1979

Mt. St. Elias earthquake (Sykes, 1971), and since

calculations of stress accumulation due to lithospheric

plate convergence suggested an impending release, it

27 Mar 1964
Msg.  8.3
Prince William Sound

Cape Yakataga
Yakutat

tsunami which c a u s e d  e x -
t e n s i v e  d a m a g e  a n d  c a s u a l -
t ies  in  the  northern  Gul f  o f
Alaska.
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a large earthquake sometime during OCS development.

Additional evidence for an impending large earthquake

is found in the analysis of several terrace levels

exposed above the present beach on Middleton Island.

These terraces (former beaches) were cut by wave action

during long periods of tectonic stability, and were

elevated during short periods of uplift during

earthquakes (Plafker and Meyer, 1978). Based on the

rate and amount of uplift required to explain the

elevations of the terraces, and the relatively small

amount of uplift which occurred during the 1964

earthquake, those investigators postulate that at least

half of the accumulated strain in the region (prior to

1964) has yet to be released.

In summary, analysis of space/time seismicitY,

development of tectonic models based on geological data

and earthquake occurrence, and analysis of elevated

beach terraces all suggest that NEGOA is under stress,

and that events which may release this stress are

overdue in some areas, namely Icy Bay to Kayak Island.

Table 2.4 Seismic source regions and calculated recur-
rence intervals for NEGOA (Lahr et al., 1980b). The
magnitudes shown are “weighted moment” and are typi-
cally about $ to 1 unit larger than the more commonly
reported “Richter” magnitudes.

Region Recurrence interval
Magnitude (Mw) (y.. )

1. Underthrusting of the Pacific plate below the Wrangell ~ 9.2
block between Kayak Island and southern Kodiak Island > 8.6

~ 8 . 0
7 7 . 3—

2. Underthrusting  of the Yakntat b l o c k  a n d  t h e  P a c i f i c ~ 8 . 9
p late  be low the  Wrangell block. >  8 . o

7 7 . 3—

3. Fault ing  a long  the  northeast  boundary  o f  the  Yakutat block. * 7 . 9
> 7 . 3
7 6 . 6

4. Underthrust ing  o f  the  Pac i f i c  p la te  be low the  Yakutat block. ~ 8 . 6
>  8 . o
Y 7 . 3
5 6 . 6—

420
100
22

4 . 7

380
46
10

240
55
12

3 , 8 0 0
830
180
39

2.2.6 Risk analysis research

Considerable research has

of the Offshore Alaska Seismic

been conducted

Exposure Study

as part

(OASES)

to produce a seismic exposure map for the Alaskan OCS

which will be useful for engineering design

(Woodward-Clyde, 1978). As part of this research in

modeling earthquake risk, it was necessary to define

the attenuation of earthquake energy between a source

and possible development site much more objectively

than by simply relating felt intensity, distance, and

magnitude. The measurements required for this

objective approach are made by strong-motion

instruments, which are triggered by an earthquake.

Unfortunately, since strong-motion data for Alaska are

essentially nonexistent, the OASES researchers had to

rely on data from areas in southern California and

Japan to develop their models. As more strong-motion

instruments are installed in Alaska, attenuation data

will become available which will further improve the

output from the models, and provide engineers with the

data they need to design platforms, pipelines, and

other structures that are as earthquake-resistant as

possible.

In other risk analysis research by the U.S.

Geological Survey (Thenhaus et al., 1979a, 1979b) 24

seismogenic zones have been delineated according to

geological data and historical seismicity. Maps of

probable ground accelerations to be expected in each

zone were constructed and include variables such as

return periods for earthquakes of various magnitudes.

Risk analysis programs are currently in progress

at the Geophysical Institute, University of Alaska? at

Lament-Doherty Geological Observatory, and at the U.S.

Geological Survey.

2.2.7 Summary of earthquake hazards

The record of great earthquakes (magnitude > 7.75)

in NEGOA is complete since 1899, and of earthquakes

greater than magnitude 5 since about 1964. The local

network of seismograph stations is presently recording

events as small as magnitude 1 in some parts of the

network and is producing data useful for identifying

active faults and possibly for defining areas of vary-

ing stress levels in the earth’s crust.

NEGOA has been the site of several large

earthquakes (magnitude > 7) during the 20th century.

Most notable of these are the Yakutat Bay events of

1899-1900, the July 1958 Lituya Bay quake which caused

a huge rockslide at the head of Lituya Bay, the 1964

Prince William Sound event which resulted in extensive

damage to Anchorage, and the recent Mt. St. Elias

earthquake which fortunately did not affect a populated

area.

The region is well-covered geographically by

seismograph stations, although improvements are

required to the network in the form of (1) more

reliable and efficient data telemetry systems,

(2) installation of offshore ocean bottom instruments,

and (3) experiments to better define the crustal

velocity structure. These improvements will result in

increased accuracy of epicenter locations and the

generation of more uniform data; the latter is

especially important for research on recurrence

intervals, stress levels, and seismotectonic province

boundaries.

At present, the best earthquake potential

estimates for NEGOA appear to result from the “seismic

gap hypothesis,” and suggest a high potential for a

large earthquake to occur in the proximity of OCS
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importance of the Copper River as a source of terri  -

genous sediment to NEGOA. Carlson and Plolnia (1975)

indicate four other areas of thick sediment: (1) a

260-m thickness seaward of ICY Bay, (2) a 200-m thick-

ness east of Cape Suckling, off the Bering Glacier, [3)

a 250-m section between Montague and Hinchinbrook

Islands, and (4) a 155-m section in Kayak Trough

southwest of Kayak Island.

Figure 2.12 Distribution of seafloor sediment by size
classification (from Carlson et al., 1977).
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Areas of sediment accumulation and erosion (or

lack of deposition) on the continental shelf of NEGOA

are s hewn in Fig. 2.14. Most of the shelf is

accumulating sediment at relatively high rates of up to

30 mm/yr (Molnia, 1978). Some areas in Icy Bay and

Yakutat Bay have sediment accumulation rates of up to 1

or 2 m/yr, an extremely high rate.

Figure 2.14 Areas of sediment accumulation and ero-
sion (or lack of deposition) on the NEGOA shelf (Molnia
and Carlson, 1978).
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sediments on relatively steep slopes indicate potential

instability, while coarse gravels are suggestive of

strong bottom currents (Carlson et al., 1977). Other

geotechnical parameters of engineering concern measured

by OCSEAP investigators (Carlson  et al., 1977) include

the shear strength of selected samples and the

plasticity and liquid limits for clayey silts and

gravelly muds.

The presence of jumbled or highly irregular

reflectors in seismic profiling records may indicate

gas-charged sediment. Fig. 2.15 shows areas in NEGOA

that exhibit unusual acoustic records in Holocene sedi-

ment, and these areas may contain natural gas in sedi-

ment pore spaces (Molnia et al., 1978a). Note that the

area seaward of the Copper River Delta corresponds to

an area of slumps and slides (compare Figs. 2.14 and

2.17). This may be an example of gas-charged sediment,

which has excess pore pressures, contributing to

seafloor instability.

The source of natural gas in NEGOA sediment is

probably the decomposition of biological detritus,

based on chemical analysis of the gases (Kvenvolden and

Redden, 1978). Those investigators found no evidence

that the gases are seepage from petroleum or natural

gas reservoirs.

jl’
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i9
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GAS-CHARGED SEDIMENTS

\‘~2x- 200 m
\
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?igure 2.15 Map showing the location of four areas in NEGOA which appear to contain gas-charged sediment (Molnia
md Carlson, 1978).
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Tertiary rocks are covered by thin layers of Holocene

sediment (deposited since the last glacial advance;

younger than about 10,000 years). Faults have been

observed cutting Tertiary rocks and overlying Holocene

sediment, but none have displayed offsets or scarps at

the seafloor surface. The absence of seafloor scarps

may be due to poor consolidation of the sediment or to

high accumulation rates, both of which could obliterate

surface expressions (Carlson and Molnia,  1977).

Recent activity of near-surface faults in NEGOA is

indicated by the occurrence of small earthquakes near

the mapped faults. Epicenters located by the local

seismic network (Stephens et al., 1978; also Fig. 2.7)

are in the vicinity of numerous faults south of

Hinchinbrook  Island, near Tarr Bank.

2.3.3 Seafloor instability

The U.S. Geological Survey has studied the

continental shelf of NEGOA extensively by means of

high-resolution seismic reflection techniques. Sig-

nificant portions of the shelf are characterized by

slumps or slides, or appear to be in an unstable

posture. Fig. 2.17 shows areas where slumps and slides

have been identified and also areas of potential

seafloor instability. Four areas which pose geological

hazards to OCS development are: (1) seaward of the

Copper River Delta, (2) Kayak Trough, (3) Bering

Trough, and (4) seaward of Icy Bay (Carlson and Molnia,

1977).

Several factors

instability. One of

contribute to seafloor sediment

the most significant in NEGOA is

/

4A70 iAC!o 145° 144” 143° 142” 141° 140° 139° 138°

61

60
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SLUMPING HAZARDS

❑ Areas  of potential slumping
❑ Areas  of slumping

— SlumD features along single seismic line

1 \ \

7 “ 1 AF.O 145° 144° 143° 142” 141° 140° 139”

Fi~ure 2.17 Locations of known slump and slide features in NEGOA. Areas of potential instability are also identi-
fied (from Molnia and Carlson, 1978).

the high rate of sediment accumulation, which leads to

poorly compacted deposits that are susceptible to

sliding, given some triggering mechanism such as

ground-shaking due to seismic activity. The relative
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2.3.4 Summary of surface geology hazards

NEGOA is bounded on the northwest by the major

thrust fault system associated with crustal subduction

and on the northeast by the major strike/slip faults of

the Fairweather system. Zones of faulting that have

been identified offshore are either parallel to or are

extensions of the larger onshore structural trends.

These offshore faults are relatively short and have

vertical offsets of 5-20 m; their geometry suggests

episodic motion as opposed to large, single event

motion.

Some offshore faults show evidence of motion

during the past 10,000 years. No offsets or scarps at

the seafloor have been observed; however, since the

sediment is soft and unconsolidated, such features

would not persist for long periods. The detection of

offshore earthquakes indicates that offshore faulting

is presently occurring.

Several large seafloor slumps have occurred in the

Copper River Delta region, Kayak Trough, and seaward of

Icy Bay. Large areas of NEGOA’S seafloor have a high

potential for instability or slope failure during an

earthquake or similar triggering event. High rates of

sediment accumulation, as in the Copper River Delta,

and gas-charged sediment are contributors to seafloor

instability.

2.4 COASTAL GEOLOGIC HAZARDS

2.4.1 Shoreline description

The morphology and sediment dynamics of NEGOA’S

shoreline have been studied in detail since 1969 (e.g.,

Nummedal and Stephen, 1976; Hayes and Ruby, 1977). The

results of NOAA/OCSEAJ?-supported research are presented

by Ruby (1977); this is the source of the following year. Neutral shorelines exhibit no net advance or

information unless otherwise cited. retreat, although they may frequently change

Fig. 2.19 shows the shoreline classified as extensively. This classification should not be

erosional, neutral, or depositional. An erosional interpreted as indicating stability. Finally,

shoreline is one which is continuously retreating and depositional shorelines grow, either offshore or ver-

is expected to continue to retreat. Rates of retreat tically, and are expected to continue to grow, provided

can be very high, on the order of tens of meters per the sources of sediment are not interrupted. Table 2.8

1 A7° 146° 145° 144° 143° 142° 141° 140° 139° 138°

,+
,:+

I ‘. %?$>
9° ‘ 59

E
SHORELINE SEDIMENT DYNAMICS

+++ Depositional
— Neutral
= = = Erosional

II !

147° 146° 145° 144° 143° 142° 141” 140° 139”

Figure 2.19 Morphological classification of shoreline between Cape Hinchinbrook and Dry Bay (Ruby, 1977).
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2.4.2 Oil spill vulnerability

The Coastal Research Division of the University of

South Carolina has assessed the probable effects of oil

spilled on the shorelines of Lower Cook Inlet (Hayes et

al., 1976), the Copper River Delta (Ruby and Hayes,

1978), and the Gulf of Alaska (Ruby, 1977). They have

classified shorelines according to the expected

residence time of the pollutant oil, with consideration

also given to biological sensitivity and natural

Table 2.9 Oil Spill Vulnerability Index (OSVI) applied
to the shoreline between Cape Hinchinbrook and Dry Bay
(Ruby, 1977).

Kilometers P e r c e n t  o f
o f t o t a l

OSVI shorel ine shorel ine D i s c u s s i o n

1-2 130 7 Oil easily removed by wave erosion; some
problems in areas of gravel accumulation
and pocket beaches. This includes most of
Subclass Al and A2 shorelines.

3-4 298 17 Generally low risk areas. Fine sands
prevent penetration of oil. Possibility of
oil burial. Many of Subclasses B1,  B2, B4,
a n d  C l  b e a c h e s  f a l l  i n t o  t h i s  r i s k  c l a s s .

5 - 6 421 24 M u d  tidsl f lats  do  not  permit  deep  penetra-
t i o n  o f  t h e  o i l , b u t  t h e  r e l a t i v e l y  l o w
e n e r g i e s r e q u i r e as much as a year to
remove the  o i  1 . Sand and gravel  beaches
a r e  h i g h l y  p r o n e  t o  o i l  b u r i a l  a n d  t h u s
f a l l  i n t o  t h i s  r i s k  c l a s s .  M a n y  b e a c h e s  o f
S u b c l a s s e s  B l ,  B 2 ,  C l ,  C 2 ,  C 3 ,  a n d  C4 fall
i n t o  t h i s  r i s k  c l a s s .

7 - 8 514 29 These  areas  inc lude  pure  grave l  beaches  and
s h e l t e r e d  r o c k  h e a d l a n d s  a n d  c l i f f s . O i l
w i l l  r e m a i n  for p e r i o d s  o f  y e a r s  i n  t h e s e
areas . Inc ludes  Subclasses  B2,  B3,  and B5.

9-1o 410 23 These  h ighly  sens i t ive  marsh  and t ida l  f la t
a r e a s  c a n r e t a i n  o i l  f o r  m o r e  t h a n  1 0
y e a r s . I n  a d d i t i o n , these  areas  are  o f  ex-
treme b io log ica l  importance .  Landward areas
o f  S u b c l a s s e s  B4 a n d  C l  f a l l  i n t o  t h i s
c a t e g o r y .

T o t a l s 1,773 100

Figure 2.20 Oil spill vulnerability of shoreline
between Cape Hinchinbrook and Dry Bay (modified from
Ruby, 1977).

cleaning ability of the environment. The parameters

which affect oil residence time most directly are the

intensity of marine processes, the size and textural

characteristics of the sediment, and the direction of

sediment transport (Ruby, 1977).

Table 2.9 presents the various categories of

shoreline and the i r associated oil spill risk

classification. The subclasses referred to are those

described in Table 2.8. The discrepancy between the

total length of shoreline in Tables 2.8 and that in 2.9

is due to the inclusion of shoreline associated with

barrier islands, spits, etc. in Table 2.9, whereas in

Table 2.8, only the simple distance along the coast was

measured. Most of the additional shoreline considered

in the oil s,pill vulnerability analysis is associated

with the Copper River Delta (C. Ruby, pers. comm.).

The oil spill risk classification for NEGOA has been

mapped in Fig. 2.20.

The area most likely to retain oil for long

periods is in the vicinity of the Copper River Delta.

147° 146° 145° 144° 143” 142° 141° 140° 139° 138°
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CHAPTER 3 CIRCULATION

E. J. C. Sobey, SAI

3.1 INTRODUCTION

3.1.1 Transport of oil in the marine environment

Oil spilled in a marine environment is subject to

a multitude of forces that make predicting its location

difficult. These forces can be categorized as trans-

portation and transformation processes. Transformation

processes are those that affect the physical and chemi-

cal properties of the oil. Examples are evaporation,

emulsification, photochemical oxidation, and solution.

Although varying with environmental conditions, these

processes are not specific to individual lease areas

and thus will not” be discussed here. For a summary of

these, see Payne and Jordan (1979).

On calm waters gravity and surface tension promote

spreading, whereas inertia and frictional forces re-

strict it. Waves, winds, and currents increase

spreading (Malins, 1977) . Waves also mix oil with

water and break up patches of oil. Kraus (1977) sug-

gests that seas (shorter-period waves) are mor”e impor-

tant than swell (longer-period waves) in mixing.

Oil drift is the movement of the center of mass of

the slick. Winds, waves, and currents all contribute

to drift and interact in ways that are not fully under-

stood . Wind induced drift is caused by shear stress in

the wind. Wind drift is accepted to be about 3 percent

of the wind speed at a small angle (e.g., 20°) to the

right of the wind. (See Tsahalis, 1979, for a summary

of experiments on wind-induced surface drift.)

It is generally assumed that oil drifts in the

same direction and at the same speed as surface cur-

rents (neglecting wind- and wave-induced drift).

Schwartzberg (1970), however, found that wood chips

(used as a reference) were not advected at the same

rate as oil. He attributed the difference to the depth

of penetration (draft). But when waves were added to

his laboratory experiments the oil and chips were

advected at nearly the same rate. Because the ocean

surface is never wave-free, we will assume that float-

ing pollutants, in addition to oil, will be advected

with the surface currents.

Wave-induced drift occurs by Stokes mass trans-

port. Stokes drift theoretically can be as high as 2.9

percent of the wind speed. However, experiments have

shown. that wave-induced drift can be higher than that

calculated for the Stokes mechanism (Alofs and Reisbig,

1972) .

The drifts induced individually by waves, winds,

and currents are not simply additive (Reisbig et al.,

1973; and Tsahalis, 1979). Tsahalis (1979) has shown

that wind generated waves decrease the net surface

drift when the wind is in the same direction as the

waves.

Further complicating the transport of oil are the

effects of the oil itself on the environment. Oil

calms surface water by reducing capillary waves.

However, the effects of surface oil on the transfer of

energy between wind and currents have received ”only

limited attention (Liu and Lin, 1979).

Predicting oil motion when the circulation and

winds are known is inexact, at best. However, experi-

ments have shown that standard oceanographic techniques

can provide reliable estimates of oil movement (e.g.,

Audunson, 1978). The problem of “where will the oil

go” has been reduced to “where will the water go.”

Thus we are assuming that oil movements follow ocean

circulation. In numerical predictions of oil movement,

wind-induced drift is added to the motion of the ocean

surface currents.

3.1.2 Oceanographic setting

The Gulf of Alaska is bounded on the north by the

arcuate coastline of

North Pacific Ocean.

is rugged, which has

lation in the gulf.

influenced by the

Alaska and on the south by the

The adjacent coastal topography

important implications for circu-

Weather patterns and winds are

topography. Precipitation and

coastal freshwater runoff are large> due to orographic

effects of coastal mountains.

For the OCSEAP study, the Gulf of Alaska has been

divided into two major components: the Northeast and

the Northwest Gulf of Alaska. The Alaska Current, the

dominant oceanographic feature of the gulf, is continu-

ous throughout the gulf. In

Alaska, however, this current

concentrated stream along the

Alaska Stream.

The Northeast Gulf can

the Northwest Gulf of

intensifies and forms a

shelf break called the

be subdivided into two

areas: Yakutat Bay to Kayak Island, and Kayak Island

to Prince William Sound. Kayak Island protrudes almost

perpendicularly from the coast. It forces the westward

flowing coastal current offshore into the Alaska Cur-

rent. East of Kayak Island numerous submarine valleys
and ridges perpendicular to the coastline cut the

continental shelf, which is typically 50 km wide. Also

many coastal glacial streams contribute fresh water to

the gulf. West of Kayak Island the shelf is wide,

typically 100 km, and is less rugged bathymetrically.

The Copper River is the principal source of fresh

water.

Circulation in the Gulf of Alaska is dominated by

the Alaska Current. It flows counterclockwise adjacent

to, and offshore of, the continental shelf break. Much

of the water in the current comes from the North Pa-

cific Drift.
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subsurface water upwells to replace the offshore flow.

Also, isopycnals bend upward over the continental shelf

and shelf break. Upwelling, if persistent, can be

important in bringing nutrient rich waters up into the

I
I :
1
I :
I
I :
I
I :
s1:Ii1,$4

euphotic zone, where they are available to primary

producers. In NEGOA, however, the upwelling season is

short and is probably too short to be biologically

significant.

The second mechanism by which winds drive circula-

tion is Sverdrup transport. The curl of the wind

stress (due to the geographical variations in winds

that are perpendicular to the wind direction) drives

the transport of

distinct seasonal

mum in midwinter

maxima are about

water. The Sverdrup transport has a

signal (Fig. 3.2): values are maxi-

and minimum in summer. The annual

30 x 106 m3/s and show a surprising

lack of interannual variability for the three years of

data (1975-1978). The summer minima are small, and

negative values (corresponding to clockwise circulation

in the Gulf of Alaska) do occur. The annual variation

in Sverdrup transport spans an order of magnitude.

UPWELLING INDICES
1970-1977

60°N,  149*W
- - - - -  60°N,  146°W

1 1 1 I 1 I I I 1 I I [
JFMAMJJ  ASO N D

Months

Figure 3.1 Upwelling indices for the Gulf of Alaska,
averaged over 1975-77 (Royer, 1978a).

Jan Jan Jan Jan
1975 1976 1977 1978

! I 1 1

30 “

20 -

10 -

0

t

d ‘i
INTEGRATED TOTAL TRANSPORT

- lo

Figure 3.2 Integrated total transport computed from
the curl of the wind stress (Reed et al., 1979).

A study conducted off Kodiak Island (Reed et al.,

1979) showed that in spite of the large seasonal signal

in the Sverdrup transport, there is no seasonal signal

in the baroclinic component of the Alaska Stream. At

first, the result seems surprising. However, at this

latitude (about 58°N) the temporal and spatial scales

of baroclinic response are much shorter and smaller

than the scales of the variation in Sverdrup transport.

The barotropic  scales are much closer in size to

meteorological scales, and it is possible that any

seasonal variation in transport is manifested in the

barotropic component (which has not yet been measured).

Although the data were gathered off Kodiak Island, the

results should be valid throughout the Gulf of Alaska.

The third mechanism is direct driving of surface

waters by winds. Surface waters move in the same

direction as the winds blow. Direct driving occurs

when the depth is small compared to the Ekman depth,

estimated to be between 35 and 50 m, (Royer et al. ,

1979), or when winds fluctuate over periods short

compared to the inertial period., which is about 14

hours in the Gulf of Alaska. When these conditions are

not met, Ekman forcing will dominate.

Winds can influence circulation by causing mixing,

which is the fourth mechanism. Mixing is greater dur-

ing the winter due to the higher wind speeds and re-

duced stratification over the shelf. (Reduced

stratification is caused by vertical convection induced

by atmospheric cooling in winter and by reduced coastal

influx of fresh water.) The greater stratification and

weaker winds in summer limit wind mixing to shallower

depths. The most important effect of mixing is govern-

ing the vertical distribution of properties and

pollutants.

Circulation 43
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3.2.5 Description of meteorological conditions

Monthly averages of winds at Middleton Island have

been given by Royer (1978a). The longshore wind compo-

nent (Fig. 3.5) is usually larger than the onshore

component, thus reflecting some polarization by topog-

raphy. Winds are westward and onshore throughout the

year except in January when there is an offshore compo-

nent. Wind direction and vector speed are given in

Fig. 3.6. The highest mean velocities occur in May and

November. Although scalar wind speeds are maximal in

January, the

November} are

Because

available for

vector mean speeds (maxima in May or

more important in accelerating currents.

few direct observations of winds are

NEGOA, synoptic scale winds, derived from

distribution of atmospheric pressure, are often used to

represent winds over the shelf. Royer (1978b) compared

synoptic-scale derived winds to observations from

Middleton Island. A simple comparison showed that the

synoptic winds overestimated o~shore Ekman transport in

winter and slightly underestimated it in summer. They

also overestimated extreme events and missed short-term

fluctuations. There are several possible reasons for

differences between synoptically derived winds and

observed winds. Mountainous terrain can steer and

funnel winds or block them. Effects of coastal moun-

tains have been observed up to 200 km offshore of the

Icy Bay-Yakutat Bay region. The coastal mountains can

also block the movement of storms, causing them to

stagnate over the Gulf of Alaska for several days

(Reynolds, 1978). The difference between air tempera-

tures over land and sea can also influence coastal

winds. Both seasonal (continentality) and daily (sea

breeze) effects occur.
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Figure 3.5 Middleton Island wind
means (from Royer, 1978a).
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Figure 3.6 Speeds and directions for monthly mean
wind data from Middleton Island (from Royer, 1978a) .
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Wind direction changed from 060° to 240° over a dis-

tance of about 10 km. Temperature increased by almost

1°C and aircraft observers noticed an increase in

turbulence. Subsequent analysis of satellite photo-

graphs revealed a thin cloud streak in this area. This

area was probably a region of convergence between

coastal winds (from the northeast) and offshore winds

(from the southwest) (Reynolds, 1978).

Thus , as katabatic winds flow seaward from the
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Figure 3.9 Profiles of temperature and wind from.radiosonde (x), tethered balloon ascent (solid lines) and descent
(dotted lines) taken at station 6 (see Fig. 3.7) (from Reynolds, 1978).

coast they are warmed by convective heating from the

sea surface below and are probably also warmed from

above. The connectively mixed layer at the sea surface

grows with distance offshore until the katabatic tongue

has been warmed to the temperature of the air above it.

Then rapid mixing occurs, and the wind direction shifts

to align with the overlying synoptic winds. In the

data presented here, this occurs about 24 km offshore.

Thus , the direct influence on surface winds of kata-

batic flows appears to be limited to areas close to

shore because convective mixing of heat occurs rapidly

(Reynolds, 1978).

Observations of wind speed and direction (and

other atmospheric parameters) were collected by Rey-

nolds using an aircraft. An unexplained feature was

observed. Over a distance of a few hundred meters

along a track directed offshore of Yakutat, a sharp

drop in windspeed (from 5 m/see to 1 m/see) occurred.
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The importance of freshwater discharge on coastal

circulation has only recently been understood. Roye r

(1979a) found that the near-surface (0-200 db) dynamic

topography”is controlled to a large degree by the lev-

els of precipitation and runoff at the coast. There

are high correlations between sea level, dynamic

heights near Seward, and precipitation from the south

coast of Alaska. Correlation coefficients between

precipitation and dynamic height (anomalies) are 0.84

(for 0-200 db) and 0.28 (for 200-1000 db) . At Yakutat

the correlation between the 0-200 db dynamic height and

(southeast) precipitation is even larger (0.97). Thus

the effects of freshwater influx on dynamic height are

limited to near surface waters. The influx of fresh

water along the coast creates a cross-shelf pressure

gradient, manifested in dynamic heights, that is in

balance with baroclinic  geostrophic currents. Thus it

appears that coastal freshwater influx drives the

coastal current.

Further investigation of this cause and effect has

shown that local precipitation alwne cannot account for

the large increase in near-surface dynamic height

anomalies and sea level from September through Novem-

ber. About 5 m of precipitation would be needed along

the coast to cause the seasonal increase in dynamic

height. When meltwater runoff is included in the

calculations, however, enough fresh water is available

to account for the dynamic height increase in autumn.

Thus, it appears that the seasonal melting of the snow

pack combined with the seasonal increase in precipita-

tion account for the increased dynamic heights near

shore (Royer, 1979a).

There is a strong correlation (0.84) between the

upwelling index (used here as a measure of the wind

field) and the deep (100-1000 db) dynamic height anoma-

lies. No correlation (0.05) exists with the near

surface (0-100 db) dynamic height anomalies and upwell-

ing indices.

The near-surface dynamic heights are predominantly

controlled by precipitation, while the dynamic heights

at lower levels are predominantly controlled by the

wind. Wind driving of deeper waters occurs through the

near-surface waters, but apparently the coastal influx

of fresh water is such a strong driving force that it

masks seasonal wind effects.

Royer (1979a) lists causes for the strong depen-

dence of dynamic height on the salinity of coastal

waters (and thus on the levels of freshwater drainage).

The first has been discussed already: the high levels

of precipitation and runoff along the south coast of

Alaska. It appears that this fresh water accumulates

along the shelf, thus having a greater effect than if

it were quickly advected away. At the low temperatures

usually encountered in the Gulf of Alaska, variations

in salinity are the dominant factor in

variations in density. For example, in the

of water the annual variation in salinity

for 74 percent of the annual variation

(Royer, 1979a).

determining

upper 100 m

can account

in density

As seen in Fig. 3.10, the seasonal cycle of sea

level at Seward is similar to that of precipitation and

nearshore dynamic heights. The correlation between sea

level and the 0-200 db dynamic height is 0.93. Also

the annual range in the 0-200 db dynamic height can

account for 172 mm of the 174 mm annual range in sea

level. Royer (1979a) found that offshore, deeper

(0-1000 db) variations in dynamic height had little

influence on coastal dynamics. Thus , seasonal varia-

tions in sea level can be accounted for by considering

changes in local steric properties (temperature and

salinity). This implies that seasonal barotropic

variations on the shelf are small and that steric

changes in deeper water are not important on the shelf.

At Yakutat variations in precipitation largely

account for variations in near-surface dynamic heights

and coastal sea level. However, the correlation be-

tween sea level and 0-200 db dynamic height is not as

strong here (0.59) as at Seward (0.93). The correla-

tion between deeper dynamic heights (200-1000 db) is

stronger at Yakutat (0.48) than at Seward (0.13).

Steric changes in offshore water may play a larger part

in the coastal dyanmics at Yakutat than at Seward.,

Winds also play a larger role in determining

annual variations in sea level at Yakutat than at

Seward. The correlation coefficients between sea level

at the two locations and the upwelling index (at 60°N,

146°W) are -0.71 and -0.39.

Royer (1979a) suggests that the differences be-

tween these two locations are due to the difference in

width of the shelf and the difference in available

quantities of runoff. The shelf is narrower at Yaku-

tat, and fresh water may escape seaward rather than

being confined to the shelf. Also, between Seward and

Yakutat there are several large sources of fresh water

that can influence coastal dynamics at Seward but not

at Yakutat. Therefore, the effects of precipitation

and runoff are less important at Yakutat, and other

processes (e.g., wind driving) may be more important in

controlling coastal dynamics.

The coastal influx of fresh water and its influ-

ence on nearshore dynamics are important because they

set up a coastal current. Pollutants that enter the

coastal zone will be advected quickly to the west,

along the coast. The coastal current generated by the

influx of fresh water probably varies seasonally, with
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at 59°33’N, 149°31’W in July 1974

and the halocline, or the salinity maximum if it is

present, temperature decreases and salinity increases

with depth. The at (density) profile is very similar

to the salinity profile ; in this region salinity varia-

tions largely control density variations, dune to the

low water temperature.

Favorite and Ingraham (1977) describe a band of

minimum salinities (<32.5 O/oo) on the surface, paral-

lel to the shelf break off Kodiak Island. This band of

minimum salinity extends throughout the Gulf of Alaska

(Ingraham, 1979). It separates offshore of Cape Fair-

weather (at 58°30’N, 138°30’W)  into coastal and off-

shore branches (Ingraham, 1979).

Over the mid-shelf region (bottom depth 220 m) the

surface temperatures are about 1.4°C warmer and the

surface salinities are about 0.5 0/00 lower than far-

ther offshore (Fig. 3.13). The lower salinity reflects

coastal dilution. A thermocline (a rapid decrease in

temperature with increasing depth) extends from the

surface down to about 60 m; below this depth, down to

10 m from the bottom there are no large variations.

There is no temperature maximum between 130 and 170 m,

which could be caused by the Alaska Current. The

salinity profile has a similar lack of features; sali-

nity gradually increases with depth.

In winter the temperature profile over the conti-

nental shelf is quite different. The upper 80 to 100 m

is nearly isothermal; isotherms are almost vertical in

this layer, with coldest waters (2.0°C) near shore.

Below the isothermal layer temperature increases with

increasing depth (Royer, 1975).

Whereas the vertical gradient of temperature

changes sign on a seasonal cycle (coldest at the sur-

face in winter, warmest at the surface in summer), the

vertical salinity gradient is almost positive (salinity

increases with depth). Since changes in salinity are
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annual minimum varies from year to year, but high

bottom salinity values coincide with positive values of

the upwelling index (Fig. 3.17).
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Figure 3.17 Monthly mean
hydrographic station along

coastal upwelling index at 60°N, 149°W (above) and salinity profiles for the most inshore
the Seward Line (below) (from Gait and Royer, 1975).
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In October-November 1975 the vertical stratifica-

tion was reduced. The apparent causes of this reduc-

tion were surface cooling and decreased influx of fresh

water. , High concentrations of suspended matter occur-

red in the upper 25 m and within 20-30 m of the bottom.

A current meter (number 61) located southwest of Kayak

Island and inshore of the 200 m isobath had consistent

offshore flow (see Fig. 13, Feely et al., 1979). The

authors speculate that winter cooling over the broad,

shallow area west of Kayak Island produces a bottom

offshore convective flow. Thq near-bottom nepheloid

layer extended beyond the shelf break; thus sediments

from the shelf were probably distributed to the deeper

waters of the Gulf of Alaska.

These data suggest that the seasonally changing

density field controls the vertical distribution of

suspended matter. Convection and mixing in the verti-

cal are suppressed by a strong density stratification

(Feely et al., 1979). High concentrations of suspended

matter at the surface probably are associated with the

influx of fresh water at the coast. High values along

the bottom could be due either to resuspension of

bottom sediments by currents or to seaward flows along

the bottom of waters laden with suspended sediment.

Distribution of suspended matter is important as

an indicator of physical processes on the shelf.

Suspended matter can be important as a flocculating

agent in the presence of petroleum pollution. Forma-

tion of oil-particle flocculants is an important proc-

ess in the removal of oil from the water column (Payne

and Jordan, 1979).
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Dynamic topographies

The baroclinic geostrophic  circulation is parallel

to the contours of dynamic height. Speed is inversely

proportional to contour spacing. In the data presented

here (Figs. 3.19 and 3.20) the speed of surface flow

relative to 1,000, db can be found by measuring the

contour spacing and reading the speed from the graph

inset on each figure. The direction of surface flow is

to the right of the local gradient that points from

higher dynamic height values to lower ones.

The dynamic topography for November 1975 (Fig.

3.19) is generally aligned with the bathymetry. High

values near the coast are the result of heavy precipi-

tation and runo’ff  in autumn. Increased baroclinic flow

(to the west) accompanies the higher dynamic height

anomalies near the coast. In Prince William Sound, as

one progresses northward into the sound, the dynamic

height anomalies increase. There is evidence of a

clockwise eddy west of Kayak Island. Royer (1978b)

states that eddies in this region are driven by salin-

ity. It appears that the coastal flow is guided

offshore by kayak Island. Some .of the low-salinity,

low-density water from this flow is incorporated into

the eddy west of Kayak Island. During periods when the

influx of fresh water at the coast is low, the dynamic

topography west of Kayak Island has little variation.

(See topography for February 1976 in Royer, 1977.)
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Figure 3.21 Seasonal transport across the Seward Line
(from Royer, 1978a).

Transport of the Alaska Current

Royer (1979c) reports estimates of the transport

for the Alaska Current. These estimates are based on

several data sets taken from 1974-1977. The annual
6 3mean transport is 9.5 x 10 m /s. This compares well

with the estimate of Favorite et al. (1976) which is

9.3 x 1 06 m3/s.

Reed et al. (1979) examined the

ity of the baroclinic transport ,of

off Kodiak Island. This study has

for the NEGOA area but the results

seasonal variabil-

the Alaska Stream

not been repeated

should be similar.

They used a reference level of 1,500 db. The mean
6 3transport was estimated to be 11.6 x 10 m /s, with a

standard deviation of 2.2 x 106 m3/s. A wide range of

values (8 x 106
to 17 x 106 m3/s) was found, but there

was no seasonal” signal to the transport variability

(Fig. 3.2). This is surprising, since there is a large

seasonal signal in the curl of the wind stress over the

Gulf of Alaska, The transports between adjacent sta-

tions along the Seward Line (Fig. 3.21) are referred to

a 100-db level, which

seasonal signal there

port calculations.

may explain why there is a larger

but not in the O-1,500-db trans-

Longshore coastal geostrophic  flows

Fluctuations in the longshore component of the

barotropic  geostrophic  current are related to changes

in coastal sea level elevation. High elevations of sea

level are related to strong westward flow over the Gulf

of Alaska continental shelf.

Monthly means of sea level (corrected for atmos-

pheric pressure) for Yakutat and Seward show similar

seasonal cycles (Fig. 3.22). High values occur between

September and February, and lower values (values below

the long-term mean) are found throughout the rest of

the year. That elevations fall below the long-term
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Longshore sediment transports were calculated from

the wave power distributions (Fig. 3.23). Wave refrac-

tion diagrams were used to obtain breaker angles;

12-second waves were used for these calculations.

Waves from the southeast dominated the sediment trans-

port in NEGOA. The net transport was to the west.

However, just west of Yakutat Bay the transport was to

the east?  probably  due to the curvature of the coast-

line. The net sediment transport here was estimated to

be 220,000 m3 per year (to the east). The largest

transport occurred in region 3 (south of Icy Bay) and

was 1.4 million m3 per year (to the west).

Refraction diagrams for 8-, 12- and 16-second

waves were drawn using the bathymetric chart of Molnia

and Carlson (1975). Eight-second waves are typical of

small summer storms; they undergo very little refrac-

tion while propagating onshore. Twelve-second waves

are commonly associated with major storms. Waves of

this period that approach the coast from the south and

southwest concentrate energy at the entrance to Icy Bay

and cause a divergence of energy at the mouth of Yaku-

tat Bay. Refraction patterns for 16-second waves are

similar to those for 12-second waves.

The estimates of longshore sediment transport are

consistent with the qualitative estimates based on

geomorphic features. These features, such as spits and

headlands, are analyzed to estimate the long-term net

littoral sediment transport. The qualitative estimates

of littoral transport are shown as small arrows in

Figure 3.23.

transport have

these analyses

Direct observations of wave-induced

not been made. Assumptions used in

are that waves propagate in the direc-

tion of the forcing wind (calculated from atmospheric

surface pressure charts) and that all waves generated

by a specific atmospheric event have the same period.

Other sources of possible inaccuracies are the lack of
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;9°
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Figure 3.23 Summary diagram of computed longshore sediment transportation rates (from Nun-medal and Stephen, 1978).

bathymetric data inshore of the 25-m isobath and the very high waves and that the wave power values that

quality of the SSMO wave data. Nummedal and Stephen they calculated may be a lower-limit estimate of the

(1978) believe that the SSMO data may underestimate actual annual wave power.

Circulation 63



JGUJbOLJ

9 b9L

WGflJO2

V

OGG1

rvCBVVGIVLl DBIEIEB2

Ljz

mOO

re

T

H
?

P
.

C
Y m 2

,.
RI !-

t
P

. s
c

d c
w

C
t

i-h
P

. m
G

’ m I-D !2

0 l-h
* 0

u
(- IJ

.
B m

GY

u
i-

l h C
L

0 R w (D m

0 H
I

t-t
u !3 .

0 *
iD w

u

0 H

lx
97

n P
.

1+
m P

. c (T
I

a Ill < + n m
P

.
UI

n

g 0 l-+

0 H
1

in w 0 *

H
I

I-
J 0 z

n m C
L

I-
t

I I I

w a.
m 0

u)
0

%



5005

I:
1oI 000

/

\5IO

550

jwç

Jo0

.I.2)
OOJ

0

500

\

/
&JO

N

-,10 10 so 00 00 0IO2

0 so 00 00 go 100

7? VHJ.

data were recorded. Buoy 0661 went west, parallel to

the coast, until it grounded near Cape Suckling. It

attained speeds of up to 40 cm/s in the coastal current

(Royer et al., 1979).

Three more buoys were released off Yakutat in

May-June 1976’ (Fig. 3.25). Buoy 1105 operated for

about three days, moving southward.

Buoy 1133 moved across isobaths, which suggests

that topographic control of currents was weak. Its

trajectory was toward the west and meandered widely.

When due south of Kayak Island buoy 1133 entered the

Alaska Current and moved faster than 65 cm/s. During

day 158 the buoy moved shoreward of the shelf break,

leaving the Alaska Current. Here current speeds were

less than 25 cm/s (Royer et al., 1979). The buoy

drifted west of Middleton Island and then reversed

direction, eventually grounding on that island. This

indicates a quasi-permanent eastward flow in the area

west of Middleton Island (Royer, pers. comm.).

Buoy 1174 initially moved southward across iso-

baths and then northward, again across isobaths. When

quite close to the coast it began to move westward,

parallel to the coast, at speeds as high as 45 cm/s.

It passed Kayak Island and was subsequently entrapped

in an anticyclonic  eddy west of Kayak Island. While it

was in the Kayak Island eddy, speeds of about 20 cm/s

were recorded. After three cycles in the eddy (taking

more than 27 days) the buoy was slowly advected west-

ward (about 10 cm/s), and it grounded on Montague

Island. Near Hinchinbrook Entrance speeds as high as

20 cm/s were measured.

Trajectories for buoys 1133 and 1174 can be com-

pared to the dynamic topography observed two months

previously (Fig. 3.20). An anticyclonic meander cen-

tered at 59”N, 142”30’W, dominated the initial move-

ments of these buoys. Buoy 1133 subsequently moved

147° 146° 145° 144° 143° 142° 141° 140° 139° 138°

-d ‘--x (

If,/ “’”v-[
59” ,-’f58

\ 7 153
LAGR~MCIAtd  nD

I ++,-,

fi,.~,m,w IAFTERS

I
A I ld5
■ 1133
● 1174

\\E ‘“:

JI ‘ - . \ I

147° 146° 145” 144” 143” 142° 141” 140° 139”

5 9

Figure 3.25 Trajectories of drogue buoys deployed in May-June 1976 (from Hansen, 1977a).
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Royer et al. (1979) compared baroclinic geo-

strophic velocities to observed buoy velocities. The

geostrophic velocities were calculated for the 35-db

level (approximately the center of resistance for the

drogue) relative to a reference level of 1,000 db.

(Where depths were less than 1,000 db, estimates were

made for the depths from the deepest common level to

1,000 db.) Drifter velocities were consistently

greater than the geostrophic  velocities. Several

possible causes for this are the presence of barotropic

currents, incorrect choice of a reference level, or

inadequate hydrographic station spacing, leading to

underestimation of dynamic height gradients. Thes e

possible causes have not yet been evaluated.

Several tentative conclusions can be drawn from

these drifter data. In general, there is agreement

between the flow inferred from dynamic topographies and

that from buoy trajectories. However, there is a

fairly consistent cross-dynamic-topography flow to the

north. The mean of the cross-shelf flow component for

all buoys was 3.9 cm/s toward shore. Speeds during

July were about twice those in May. (The mean long-

shore speed was 9.5 cm/s in May and 10.1 cm/s in June.)

Royer et al. (1979) offer this explanation of the

observed onshore and subsequent westward movement of

the buoys: with the influx of fresh water at the

coast, the upper layer of water would be expected to

move seaward. This layer would consist of fresh water,

as well as salt water entrained by the offshore fresh-

water flow. An onshore flow of sea water beneath this

near-surface flow would be expected for mass balance.

The drogues  could be carried shoreward with the onshore

flow until they reach the interface between the two

layers. The opposing seaward and shoreward forces

would tend to stabilize the onshore-offshore position

of the buoy while allowing it to be advected parallel

to the coast.

The upwelling index during these drifter experi-

ments generally was conducive to offshore surface flow.

This is in contrast to the general onshore movement of

the buoys. Royer et al. (1979) conclude that drifter

drogues (at 35 m depth) are below the surface Ekman

layer and thus they could be advected shoreward.

Current meter data from the same time of year (but from

1974) support this hypothesis. Currents at all depths

show an onshore flow. Since the uppermost current

meter was at a depth of 20 m, an offshore-flowing

surface Ekman layer must have been less than 20 m deep.

Coastal precipitation and runoff have already been

shown to be important in driving coastal flow (see

section 3.2). As the coastal addition of fresh water

increases seasonally, the offshore surface flow should

increase. This increased flow would entrain more deep

water up into the offshore-flowing layer, and thus

onshore flow speeds would also increase. From June to

August the onshore component of mean drifter velocity

nearly doubled; precipitation also doubled over

period. Thus the onshore movement of drogues is

this

con-

sistent with entrainment hypothesis suggested by Royer

et al. (1979).

Other tentative conclusions are listed here. The

presence of the baroclinic eddy west of Kayak Island is

confirmed by these drifter trajectories. Speeds in the

eddy are estimated to be almost 20 cm/s. A strong

(40-50 cm/s) coastal current exists between Yakutat Bay

and Kayak Island. Speeds in the Alaska Current were

estimated to be greater than 65 cm/s. The shoreward

side of the Alaska Current seems to be a region of

transient eddies. Using dynamic topography, Royer et

al. (1979) estimate them to be about 100 km in diame-

ter. They appear to be advected westward with the mean

flow.

The last observation is that a surprisingly large

percentage of the drifters grounded near the entrance

to, or inside, Prince William Sound. Half of the buoys

released grounded there. All of the buoys released in

August-September 1976 entered Prince William Sound.

Royer et al. (1979) suggest that an ageostrophic baro-

clinic flow could have advected the buoys into Prince

William Sound. The September 1976 dynamic topography

(Fig. 8, Royer et al., 1979) shows that the 0-100 db

dynamic height is greater outside, on the seaward side

of Hinchinbrook Entrance, than on the inside. Thus

there could be a cross-dynamic-topography flow into

Prince William Sound. In a

current meter data, Royer

inflow through Hinchinbrook

through Montague Strait.

Nearshore currents

preliminary analysis of

(1978c) found a general

Entrance and an outflow

Mapping the suspended matter contributed to the

Gulf of Alaska by coastal rivers provides a means of

tracking coastal currents. Three rivers that emanate

Circulation 67
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Molnia and Carlson (1978) inferred nearshore

circulation from satellite imagery taken from September

1972 to November 1973. They used patterns of turbid

water coming from coastal streams to make qualitative

estimates of the nearshore flow. The general flow is

westward. However, a substantial component of the flow

is outward from the shore.

The inferred flow reflects processes with short

time scales (e.g., tides and winds) that are averaged

out of most other circulation patterns in this synthe-

sis report. It also reflects the influence of coastal

morphology. For example, the seasonal deflection of

nearshore currents by Kayak Island (Fig. 3.28) is shown

in the inferred circulation. However, there was no

evidence for the eddy

Another feature

William Sound through

inbrook Island. The

(Fig. 3.26) supports

through Hinchinbrook

west of Kayak Island.

shown is the flow into Prince

entrances on both sides of Hinch-

trajectory of Lagrangian drogues

the idea that the surface flow

Entrance is inward, into Prince

William Sound. Molnia and Carlson (1978) point out

that the Copper River is a more important source of

sediments for Prince William Sound than are streams

that empty directly into the sound. Data presented in

Section 3.4 imply that there

to the surface flow throughout

offshore components of surface

Yakutat Bay, east of Yakutat

River Delta.

is an offshore component

NEGOA . There are strong

flow between Icy Bay and

Bay, and off the Copper

147° 146° 145° 144° 143° 142° 141° 140” 139” 138°

51’

NEAR SURFACE CIRCULATION INFERRED
FROM ERTS IMAGERY

I —  S e p t e m b e r  1 9 7 2
‘...._

--------+  September 1973
~ .—

) (. I
I

b-.., * ~oo  ~  ., (.~ . .._. \ / I
I I U. “ .JJI I I I I I I

147° 146° 145° 144° 143” 142° 141” 14(-)” 139”

Figure 3.28 Near-surface currents as inferred from ERTS imagery (Carlson et al., 1978).
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3.4.2 Eulerian descriptions

Data from several installations of current meters

provide a fairly complete description of the circula-

tion in NEGOA. The net current drift is longshore

toward the west or northwest. Current speeds vary

seasonally: mean current speeds in winter are about

twice those in summer. In general, mean vertical

shears (differences in speed and direction at different

depths) are small. Monthly mean currents are signifi-

cantly correlated with mean winds; the winter increase

in current speeds can be largely attributed to in-

creased wind intensities (Muench  et al., 1978).

The structure of the current regime of the shelf

near NEGOA can be ascertained from the data of Hayes

and Schumacher (1977) . Mean currents are shown in

Fig. 3.30 for each of the current meters that was

deployed in the period of March to May 1976.

The currents tended to parallel local bathymetry

except at Mooring 60. Here the mean currents were

weak, typically a few centimeters per second. The

currents at Station 69A had a cross-shelf tendency,

while those along the shelf break (Station 61B) were

longshore, parallel to the bathymetry. Mean currents

at the three moorings off Icy Bay (SLS 8 and 4, and G2)

were also largely parallel to the bathymetry.

IA7” lAGO 145° 144° 143° 142° 141° 140° 139° 138°

;l(

;0

i9

CURRENT VELOCITIES, March-May 1976

Depth of current meter
20 m ,—* “  \Y200m>

/g\
50 m —>

loom  —b
1 1 I

5 0 5 10 15 20 L
180m ~ Speed Scale cm/sec
240 m ~ ‘x 200o m Y 4

l! \ \
147° 146° 145° 144” 143” 142° 141” 140° 139”

51(

jO

i9

Figure 3.30 Average current velocities for March to May 1976 (from Hayes and Schumacher, 1977).
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Figure 3.33 Average current velocities for May to October 1976 (from Hayes and Schumacher, 1977).

that the clockwise-rotating fluctuations did not propa- presence of these eddies comes

gate onto the shelf. These fluctuations were coherent tories and dynamic topography.

in the vertical, with essentially no phase lag. Muench appear barotropic over a vertical

from drifter trajec-

(Although the eddies

scale of 200 m in the

et al (1978) and Hayes (1979) concluded that the rotary current meter records, a baroclinic component also

oscillations are quasi-barotropic  motions occurring appears in the dynamic topography.)

along the shelf break and that they are unable to Farther west, near Kayak Island, the flow is

propagate onto the shelf. Other evidence for the complex and weak at tidal and low frequencies. The low

levels 01 energy pro13aDly lnalcate tnat water parcels

remain in this region a long time. Fluctuations in

velocity similar to those of the mean flow occur during

winter storms.

NEGOA can be divided into two circulation regimes:

those east and west of Kayak Island (Muench et al.,

1978). From Yakutat Bay to Kayak Island the continen-

tal shelf is narrow, about 50 km wide. West of Kayak

Island it widens to about 100 km. In the eastern

section coastal currents and shelf break currents are

independent. West of Kayak Island two current regimes

have merged. Along the coast another coastal current

is established by the influx of fresh water. Also west

of Kayak Island the shelf is wide and shallow, snd

local wind effects may be more important there in

driving currents.

Current patterns west of Kayak Island are compli-

cated by the effects of the island on the westerly

circulation. One such effect is the formation of

vortices such as the permanent anticyclonic eddy west

of Kayak Island (Muench et al., 1978).

Seasonal variability

Winds and currents change seasonally on the conti-

nental shelf. The winds in late winter and spring are

strongly westward and variable. During summer the mean

wind speed is substantially less and the direction is

eastward. The mean current speed on the shelf de-

creases by a factor of two between spring and summer

(Hayes and Schumacher, 1976a). The discharge of fresh

water also has a strong seasonal signal (e.g., Fig.

3.11), which has a major influence on dynamics of shelf

circulation.
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Figure 3.34 Cross-shelf pressure gradient between indicated depth contours versus
(Hayes and Schumacher, 1977).

onshore and longshore wind

3.5 SIMULATIONS OF CIRCULATION

Gait et al. (1978) made a series of trajectory

simulations in NEGOA. Their model is a finite element,

diagnostic model presented by Gait (1975). It calcu-

lates a velocity field from density and wind field

data. It is a linear combination of barotropic and

baroclinic  geostrophic components and upper and lower

Ekman boundary layers.

The barotropic current component is continuously

, set up by the wind field. Sea surface elevation across

the shelf is represented as a linear profile which is

stationary (hinged) along the shelf break. Instead of

one straight line of zero-sea-level fluctuations

throughout NEGOA, there are six such hinges. The

cross-shelf slope of the sea surface is modeled to be

proportional to the square of the wind speed times the

cosine of the angle between the wind and the coastline.

The baroclinic  current component is calculated

from available hydrographic data and is held constant

throughout a simulation. Dynamic heights on the shelf

are calculated relative to the bottom and those off the

shelf to a reference level of 1200 m. The assumed

level of no motion thus follows the bathymetry, and the

effects of changes in depth from one location to

another are taken into account within the baroclinic

component. The baroclinic response is calculated for

each set of hydrographic data and this response is

stored in an environmental library. The appropriate

response is accessed based on the time of year of the

simulation to be made.

Ekman stresses are applied to both the top and

bottom surfaces. The wind-driven Ekman layer is added

to the geostrophic components, and the bottom Ekman

layer accommodates a zero slip condition along the

bottom. The equations of motion are integrated over

the depth of the water column and are cross-

differentiated to give an equation for vorticity. The

model gives a two-dimensional representation of surface

currents that are the resultants of the several compo-

nents integrated vertically. For analysis of oil spill

trajectories an additional forcing of 3 percent of the

wind speed is added.

The boundary conditions along the coast allow no

transport into or out of the coast. Along the open

shelf boundaries of the model no boundary conditions

are set.

Large-scale synoptic maps of sea level atmospheric

pressure data are analyzed to identify dominant wind

patterns. These wind patterns are considered to be

quasi-steady states of the atmosphere that are fre-

quently observed. Twelve characteristic patterns, or

subtypes, have been identified as representative of the

climatologies that exist in NEGOA (see Fig. 3.3).

These are modifications of the weather types reported

by Sorkina (1963) and Putnins (1966).

Each

pressure

The type

tial grid

that day.

of the subtypes is correlated with daily

maps to determine the best correspondence.

with th~ highest correlation across the spa-

is chosen to represent the pressure data for

(Figure 3.4 is a summary of the correlation

for each climate type in each season.)
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month or longer) variations (Royer,

1979a) throughout the year.

In the experiments reported by Gait et”al. (1978),

seven release sites were used during July-August 1974

and February-March 1975. At each location for each

season releases of oil were simulated every five days.

Trajectories for each release were continued until they

exited the model boundaries or until the time limit of

two months was exceeded.

Baroclinic currents were dominated by mesoscale

eddies along the continental slope. Except for the

baroclinic gyre west of Kayak Island, the baroclinic

currents on the shelf were relatively weak. The strong

winds that exist in winter caused greater displacements

in the simulations than do the weaker summer winds.

The release sites are shown in (Fig. 3.35). Those

releases made at Site One tended towards the northwest;

pollutants in these paths could affect a large area of

the coastline. The winter releases traveled farther

and spread farther than did those from the summer

releases.

The Site Two trajectories seemed to be greatly

influenced by strong baroclinic currents at and seaward

of the shelf break. Several of the summer trajectories

led to the east and appeared to follow the submarine

valley that leads to Yakutat Bay. Other releases

seemed to oscillate along the edge of the shelf. Two

others moved southward off the shelf and across the

slope. The winter releases moved eastward initially

under the influence of baroclinic currents along the

slope. Then some moved northward and reached the coast

and one moved offshore and was quickly advected west-

ward by the Alaska Stream.

Most of the releases at Site Three moved onshore

over a wide (about 70 km) front. In summer two moved

to the east, probably driven by winds. In winter, one
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. . ., ,., ,.,,,.,.
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Figure 3.35 Release sites for simulated trajectory studies (Gait et al., 1978).

release moved offshore and eastward under the influence the complex bathymetry in the area. These releases

of a baroclinic eddy along the continental shelf. Two appear to reach the coast. In winter a single release

others went toward the west and grounded on Kayak traveled to the southeast across the shelf and slope.

Island. From the site southwest of Kayak Island, Site

Almost all of the releases made at Site Four moved Five, most releases moved north or west and reached the

to the north and west; however, there was a wide spa- coastline of Kodiak Island. In the summer simulations

tial scatter in the trajectories that is attributed to a few releases travelled eastward as far as Icy Bay.
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of the shelf break. It ,has a surface layer of low

salinity and a subsurface temperature maximum. Associ-

ated with the Alaska Current is a permanent halocline

at about 150 m (Gait and Royerj 1975) and warm surface

water (Royer and Muench, 1977).

The Alaska Current is a narrow (less than 75 km in

width), high speed flow. Mean speeds are probably

about 60 cm/s, but extreme speeds greater than twice

this value have been reported. Mean transport for the

Alaska Current has been estimated by Reed et al. (1979)

to be 9.5 x 106 m3/s (0-1,000 db). There is disagree-

ment on whether a seasonal variation occurs in the

transport (Royer, 1979c; Reed et al., 1979).

Royer (1979c) describes the Alaska Current as a

boundary between the warm, high salinity water of the

North Pacific and the cooler, lower salinity water of

the continental shelf. It is not stationary, however.

Though the Alaska Current generally parallels the shelf

break, it does meander inshore and offshore.

Large (100 km in diameter) eddies are found in-

shore of the Alaska Current. Although they do not

propagate onto the shelf, these eddies have a lifetime

of about two months. At high frequencies (time scale

of two to several days) the eddies are vertically

coherent and largely barotropic. However, they also

have a baroclinic component. Baroclinic geostrophic

speeds of 46 cm/s (0-1,000 db) have been estimated.

3.6.2 Coastal jet

Trajectories of drogues (Royer et al., 1979) have

shown the presence of a narrow coastal jet. It has

also been observed in nearshore hydrographic data

(Royer, 1979b). Distributions of suspended matter

(Molnia and Carlson, 1978; Feely et al., 1979) clearly

show the advective effects of this current as sediments

are carried towards the west with some apparent off-

shore advection.

The coastal current or jet is 20-30 km wide.

Typical baroclinic speeds are 15-40 cm/s. It appears

to be stronger in fall and winter, probably in response

to increased levels of fresh water discharged along the

coast. The barotropic component of the coastal jet is

largest during winter when strong winds cause sea level

setup.

Royer (1979a) has shown that seasonal variations

in coastal sea level are caused by changes in local

steric values, which are caused by seasonal changes in

the influx of fresh water along the coast. Thus ,

seasonal changes in speed of the coastal jet are baro-

clinic. However, on shorter time scales (on the order

of a day to a week) the coastal jet varies barotropic-

ally with changes in the wind field.

A coastal current appears to be present throughout

the Gulf of Alaska. Although it is diverted offshore

by Kayak Island, a new current forms west of Kayak

Island largely because of the influx of fresh water

from the Copper River.

3.6.3 Circulation on the continental shelf

Mean currents over the continental shelf are weak

in comparison to the strong Alaska Current and to the

strong coastal jet. Flow is longshore towards the

west, but there is also considerable cross-shelf flow.

Buoys drogued at 35 m depth undergo rapid onshore

advection over the shelf (Royer, et al., 1979). Cur-

rent meter records at one mooring show onshore flow at

all depths below 20 m. Thus , although there are few

observational data, (see Fig 3.28) there may be a

strong offshore flow in the upper 20 m (to conserve

mass). If this strong offshore flow does exist, it

probably would advect surface pollutants (e.g., crude

oil) seaward, away from coastal resources. However,

Royer (1979b) states that near-bottom flow measured by

current meters is generally offshore. Conservation of

mass could be met’,by  this flow.

Low-frequency (time scales longer than a month)

dynamics are controlled to a large degree by levels of

coastal precipitation and runoff. Variations in steric

heights over the shelf near Seward can be accounted for

almost entirely by variations in the coastal influx of

fresh water. At Yakutat, where there is less precipi-

tation and a narrower shelf on which fresh water can be

contained, the influence of the influx of fresh water

on sea level is smaller. At higher frequencies (time

scales of one to a few days) winds control sea-level

fluctuations. Hayes (1979) has shown that the sea

level (bottom pressure) responds to onshore winds in

shallow waters, while in deeper water (depths greater

than 50 m) set-up from, longshore wind is dominant.

Kayak Island, which separates the relatively wide

continental shelf to the west from the narrower shelf

to the east, is an important topographic feature that

controls circulation. It also forces the coastal jet

and the Alaska Current into close proximity. Directly

west of Kayak Island is a permanent, clockwise eddy.

It has a strong baroclinic  component, with speeds

estimated to be 15-30 cm/s (for 0-100 db). Apparently,

low-density water is supplied to the eddy by the

coastal current, and this water provides at least some

of forcing for the eddy. Gait (1976) postulates that

this eddy is a ‘potential site for the accumulation of

surface pollutants.

On the shelf west of Kayak Island mean currents

are weak. Local wind forcing dominates this large,

shallow region. Near the coast flow is controlled

largely by freshwater discharge from the Copper River.
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CHAPTER 4 CHEMISTRY

K. W. Fucik, SAI

4.1 INTRODUCTION

Terrigenous,  biogenic, and petrogenic hydrocarbons

all occur in the marine environment. Terrigenous and

biogenic hydrocarbons occur naturally. One of the

goals of OCSEAP is to assess changes in the Alaskan

marine environment resulting from offshore petroleum

development. First, however, it is necessary to

identify present levels of hydrocarbons and their

probable origins.

Hydrocarbons in the water are likely to increase

during the exploration, production, and transportation

phases of development. Because some of the

hydrocarbons common to petroleum are also produced by

marine organisms, natural background levels of

hydrocarbons must be established before contributions

from petroleum development can be measured. Techniques

developed for tracing the sources of hydrocarbons will

also be valuable in future monitoring and assessment

programs.

The few studies of the chronic effects of

petroleum operations on marine environments have

reported little damage. In a comprehensive study of

the effects of almost 30 years of petroleum operations

on the estuarine and offshore waters of Louisiana, the

Gulf Universities Research Consortium (GURC) Offshore

Ecology Investigation (OEI) found that concentrations

of all compounds associated with drilling or production

were too low to be a persistent biological hazard; the

region, which is very productive, appears to be

ecologically healthy; and study sites in Timbalier Bay

showed no significant ecological change as a result of

petroleum operations, which began in 1952 (Oppenheimer,

1977)+

Another study has been monitoring the effects of

an oil and gas field in about 20 m of water off

Galveston, Texas, Although production and development

began in 1960, petroleum operations appear to have had

little effect on the local environment. Hydrocarbon

levels in the water have been low (<35 ppb), and

petroleum hydrocarbons have been detectable in the

sediments only in the immediate vicinity of the

platforms (Jackson et al., 1978).

In the same area, Armstrong et al. (1979) examined

the effects of an oil separator platform in the shallow

waters (=2 m) of Trinity Bay, Texas. Reduced benthic

populations near the platform were correlated with

naphthalene concentrations in the sediments. The most

drastic changes were noted within 150 m of the

platform. Total concentrations of naphthalenes  ranged

from 6 ppm to 22 ppm. No changes were evident 500 m

from the platform.

The effects of major oil spills have been

variable. The Argo Merchant spill appears to have had

little lasting effect on the environment (Kuhnhold,

1978; Morson, 1978), probably because the oil remained

in open waters and did not come ashore. The ultimate

effect of the Metula spill is unknown but may be

significant at heavily oiled sites (Straughan, 1978).

The Amoco Cadiz spill contaminated littoral communities.  —
immediately (Hess, 1978); the long-term effects of this

spill are under study. Studies of the effects of the

IXTOC I blowout in the Gulf of Mexico have just begun.

In gas and oil field operations heavy metals can

enter the marine environment in formation waters,

drilling muds, crude oil, or sediments. Studies in the

Buccaneer oil and gas field off the Texas coast showed

elevated levels of barium, lead, strontium, and zinc in

the sediments; these may have come from petroleum

operations (Armstrong et al., 1979). If these toxic

metals are incorporated into the marine food web, they

could ultimately contaminate human food and are thus a

potential health hazard to man. They may also cause

permanent changes in local animal communities .

Knowledge of the present concentrations of heavy metals

in the water, sediments, and biota of Alaskan marine

waters is required before oil development begins so

that future changes in metals concentrations can be

accurately measured.
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one (48) , where 127 mg ,were found. Seventy-sevefi Table 4.2 Weights of total hydrocarbons in the sedi- was greater than 1 but did not approach the higher

seston tows in Alaskan waters covering 740 mz of sea ments of NEGOA. values (’v2) often observed in young sediments. This

surface yielded a mean tar concentration of 2.17 x ratio is
Kaplan (1976)b

unit y for
Station

near petroleum, whereas

10-3 mg/m2. Overall, these tar levels were lower than

4.2.2 Sediment concentrations

those found in other parts of the world’s oceans.
1

:
9

13
16
19
22
26
30
32
37
39
41
42
43
44
48
50
51
52
53
55
57
59
75

Pws 107
Pws 12

In aquatic ecosystems the sediments are the

ultimate sink for many contaminants. Processes that

increase the specific gravity of petroleum, causing it

to sink, are (1) evaporation and dissolution, (2)

degradation and oxidation, (3) formation of dispersed

particles and subsequent agglomeration, (4) absorption

and adsorption by particulate matter, and (5) uptake of

seawater during emulsification (Clark and MacLeod,

1977). Several examples in which the incorporation of

petroleum hydrocarbons into the sediments has resulted

in chronic pollution have been reported (e.g. , Blumer

and Sass, 1972; Vandermeulen and Gordon, 1976;

Armstrong et al., 1979).

Sediment hydrocarbons have been analyzed from only

a few locations in NEGOA. Shaw (1975) found total

hydrocarbon levels ranging from 1.1 to 26.3 pg/g wet

sediment (Table 4.2) . The c~4-c3(j hydrocarbons

represented a small fraction of the total hydrocarbons

present, with weights ranging from 0.2 to 17.5 pg/g wet

sediment. Kaplan (1976) found that the amount of

organic matter in the sediments was less than 1

percent. The total weight of the hydrocarbons ranged

from 141 to 196 pg/g dry sediment. When broken down to

its component parts, the saturated fraction contained

the lowest amount of extractable material and the polar

component contained the most.

Shaw (1975)a

4 . 5
1 6 . 2
1 3 . 7

2 . 4
1 0 . 9

5 . 3
1 . 4
1.2
3 . 7 ,  1 . 1
3 . 1

1 3 . 0
5 . 0
7 . 2

1 7 . 2
12.5

11.1
16.0, 14.8
22.1, 15.1

1 4 . 4
15.9

7 . 8
2 6 . 3
18.5
16.7

3 . 0

Solvent
% organic e x t r a c t - Liquid chromatography

carbon able Saturated Aromatic Polar

0 . 8 4 143.1 7.07 31.80 70.67

0 . 6 6 141.1 18.71 18.71 76.92

0 . 7 8 170.4 29.77 47.97 8 2 . 7 0
0 . 7 3 195.8 26.11 11.19 143.60
0.81 146.4 15.52 2 8 . 8 3 8 8 . 7 3

0 . 9 2 162.3 20.55 26.71 100.68

0 . 9 2 159.6 12.27 39.27 9 8 . 1 8

a  pg  hydrocarbonsig w e t  s e d i m e n t .

b
pg  hydrocarbonsjg dry  sediment .

Attempts to determine the origin of the
hydrocarbons were inconclusive. Shaw and Kaplan found

no traces of phytane in the sediments. Shaw noted the

absence of a large unresolved envelope in the
chromatogram traces. This is in contrast to sediment

samples collected near known oil seeps in NEGOA that

were characterized by highly weathered petroleum
(hence, a large, unresolved envelope). Both findings

suggest that the hydrocarbons are biogenic. A

“petroleum origin for these hydrocarbons is supported by

the absence of odd chain lengths in the hydrocarbons of

the benthic sediments (Shaw, 1975) and by Kaplan’s

(1976) finding that the odd/even ratio for his samples

biosynthesized n-alkanes usually have odd carbon—
numbers. Further evidence for a petroleum origin was

an absence of C17 or C22 olefinic hydrocarbons, often

associated with young sediments in which the organic

matter is largely derived from plankton (Kaplan, 1976).

From analysis of sediments from south-central

Alaska waters, Shaw (1978) determined that adsorption

of hydrocarbons onto the sediments is unlikely to be a

major factor in the dispersal of spilled oil. In the

immediate vicinity of oil spills, however, oil droplets

may coat sediments and sink, the reby increasing

concentrations of oil in the sediments.

4.2.3 Hydrocarbon levels in the biota

Marine organisms accumulate petroleum hydrocarbons

either directly from the water or by ingestion.

Laboratory and field studies have shown that some

organisms accumulate hydrocarbons until they die or are

removed from the hydrocarbon source. Once removed from

the source, most organisms can rid themselves of the

hydrocarbons accumulated in their tissues. Crustaceans

and fish can also metabolize hydrocarbons. Little is

known of the fate or effects of the metabolic products

of hydrocarbons on organisms.

Petroleum hydrocarbons may be acutely lethal or

chronically sublethal to marine organisms. Their

effects vary with species, life stage, nature of the

oil (i.e., crude or refined), and the degree and

duration of exposure (Rice et al., 1977). Most of our

present knowledge comes from laboratory studies.
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Methane

Methane levels in the surface shelf waters usually

ranged from 100 to 300 nl/1. Surface concentrations

sometimes exceeded 300 nl/1 southwest of Kayak Island,

possibly because of the anticyclonic gyre observed in

the area. Concentrations of 600 nl/1 were measured

near Icy Bay in July 1976; these were probably related

to the high biological productivity observed at this

time (Fig. 4.2). The highest methane concentration

measured was 1680 nl/1’ at the entrance to Yakutat Bay.

It is not known, however, whether this concentration

was caused by high primary productivity or by the

surface entrainment of petrogenic hydrocarbons from the

bay.

Offshore concentrations (from those samples taken

beyond the shelf) were less than 100 nl/1 and were

presumably approaching saturation with the overlying

atmosphere.

Methane levels were higher and

the near-bottom waters, reflecting

these waters to a bottom source.

suggests intermittent sources

more variable in

the proximity of

The variability

and/or variable

circulation patterns. Methane concentrations in the

bottom waters ranged from 100 nl/1 to about 1,500 nl/1.

Very high levels in the bottom waters were observed

near Tarr Bank, where fine-grained sediments rich in

organic matter are prevalent. The major source of

methane in the 1975 samples was the Hinchinbrook Sea,

Valley near Montague Island, where near-bottom waters

drift toward the east. This area had variable methane

concentrations, usually above 400 nl/1. There was

little indication of advective drift in April and July

1976. The major source of the methane during July

147° 146° 145° 144° 143° 142° 141° 140° 139° 15m0

I
i9°

-.–
’ 7 2

SURFACE METHANE CONCENTRATIONS (nI/l)
hly 1976

’ 8 0

“on
’91

II I
147° 146° 145° 144° 143” 142° 141” 140” 139”

Figure 4.2 Areal distribution of methane (nl/1) in surface waters during July 1976 (Cline et al., 1978).

appeared to be an area north of Tarr Bank. The April October-November or July concentrations and reflected

methane levels were lower than either the the distribution of fine-grained sediments.
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4.4.2 Concentrations of trace metals in sediments

The levels of heavy metals in the sediments at

several stations in NEGOA were determined by Burrell

(1978) and Robertson and Abel (1979). Metals

concentrations in the sediments increase nearly twofold

from the Bering Sea to the Western Gulf to the eastern

Gulf of Alaska. Nevertheless, metals concentrations in

all of the Alaskan shelf areas are typical of those of

uncontaminated, mid-latitude coastal regions.

Leaching experiments were performed to determine

the fraction of metals readily available from the

sediments. This “available” fraction is thought to

represent that part of the total sediment repository

which are subject to biological assimilation or

alteration and/or release of metals due to petroleum

related activities (Robertson and Abel, 1979). Burrell

(1978) reported that the percent of extractable metals

correlated with sediment grain sizes and increased from

the Bering Sea to NEGOA. Available Mn, Co, V, Fe, and

Sc ranged from 21-82 percent, 11-59 percent, 8-29

percent, 5-27 percent, and 1-10 percent, respectively,

of their total concentration in the sediments

(Robertson and Abel, 1979).

4.4.3 Concentrations of metals in the biota

Concentrations of sixteen heavy metals in the

biota of NEGOA have been determined for the alga FUCUS,

the bivalve Mytilus, the snail Neptunea, rock sole,

pollock, and king crab (Burrell, 1977; 1978; Robertson

and Abel, 1979). Concentrations of metals in these

organisms are consistent with values obtained from the

water and sediments and indicate the generally clean

nature of the Alaskan marine environment system.

Mercury concentrations, which are the most

intercomparable  with other areas of the world because

of the amount of baseline data, were typical of those

found in uncontaminated shelf areas of the world

(Robertson and Abel, 1979).

In comparison to the other organisms, king crab

(Zn, Ag, As) and Neptunea (As, Se, Zn, Hg, Fe, Sb, CO,

V) tended to accumulate high levels of certain metals

(Table 4.,6). This tendency to concentrate these metals

is not unusual in these organisms. The variability of

metals concentrations in Mytilus was sufficiently small

to make this species a good indicator organism for

metals contamination.

Table 4.6 Mean concentrations of selected metals in
Alaska OCS biota, (Burrell,  1977; 1978; Robertson and
Abel, 1979).

Number (Metal ppm dry weight)
of  samples Ag As Cr Hg Se . Zn

Crab 12 1 . 1 7 ? 0 . 4 8 41*1O <0.50 o.33io.14 5,6*4,2 l17t18

Rock sole 9 <0.038 18f9 1.3*1.9 0.27t0.10 z.0*0.7 3225

POllock 14 <0.035 4.7*2.4 O.26AO.1O 0.12’10.08 1. Ltl.2 23*6

Neptunea 5 35?32 71~48 1.lt13.6 2.0+1.5 33ih8 3260i26

Mytilus 18 0.087k0.036 7.5*2.8 3.9i3.9 0. 23’iO .09 2.6flJ.5 $3i3~.+9

Fucus 15 o.130to.04 17*7 1.9fl.8 0.056f0.026  0.049f0.022 14~3

Seaweed 10 0.062f0.037  11+5 1.7*1.3  0.046f0.034  0.064~0.063 8.623.9

4 . 5  S U M M A R Y

As in other areas of the Alaskan OCS, the measured

hydrocarbon levels indicate an essentially unpolluted

environment. Soluble hydrocarbons were probably

biogenic, and the levels of floating tar were as low as

or lower than those reported in open ocean waters

elsewhere. Hydrocarbon levels were also low in the

sediments and in certain organisms.

Low-molecular-weight hydrocarbons (LMWH) were

sampled over three seasons. Their distribution and

composition indicate that they are biogenic rather than

petrogenic. The levels of LMWH were within the range

of concentrations measured in other areas of the

Alaskan OCS and other unpolluted regions of the world’s

oceans.

Sampling of the water, sediments, and biota of

NEGOA indicated no contamination by trace metals.
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CHAPTER 5 NUTRIENTS, BACTERIA, AND PLANKTON

K. Fucik, SAI

5.1 LOWER TROPHIC LEVELS

Trophic dependencies

depicted for simplicity

straight linkage between

links. A more realistic

in ecosystems are often

as a food chain, i.e., a

successively higher trophic

idea, however, is the food

web, in which organisms in the ecosystem show trophic

dependencies on other organisms at the same or higher

trophic levles.

Phytoplankton make direct use of free nutrients

and form the basis of the food web in most marine

ecosystems. They are the major source of food for

zooplankton and some larval forms. In turbid waters,

such as some estuaries, where phytoplankton populations

are low, detritus and attached bacteria are often

directly consumed by zooplankton.

In subarctic marine waters phytoplankton  grow most

rapidly during the spring or early summer. Light is a

major factor limiting primary production during the

winter in the subarctic regions, and the increased

light levels in spring, coupled with the availability

of ,nutrients (primarily nitrates, phosphates, and

silicate) and stabilization of the water column,.
trigger the accelerated growth, or bloom.

Stability of the water column occurs when density

stratification is positive (i.e., density increases

with depth). In NEGOA, stability can be induced by

either freshwater runoff from land or heating of the

surface waters by the sun in the spring and summer.

The water column in NEGOA is unstable during the

winter, as high winds thoroughly mix the surface layer.

Because of the low light levels in the winter, the

mixed layer often exceeds the depth of the euphotic

zone (the region where active photosynthesis occurs),

and primary productivity is lost when phytoplankton are

carried out of the euphotic zone. Stabilization of the

water column in the spring and summer results in a

euphotic zone that extends deeper than the mixed layer.

The stabilization of the water column further

affects phytoplankton and their utilization of

nutrients. Most of the nutrients utilized by the

phytoplankton during the spring bloom have been brought

to the surface from the nutrient-rich deeper waters by

turbulence. With stabilization of the water column the

influx of nutrients from deeper waters ceases, and

phytoplankton  productivity is eventually limited as

nutrients are utilized in photosynthesis.

Bacteria are the primary recyclers of nutrients in

the water column. A generalized picture of bacterial

distributions in the open ocean shows high numbers

immediately below the level of maximum photoplankton

activity and at the ocean bottom (Fig. 5.1). The rate

of nutrient recycling corresponds closely to the

vertical distribution of the bacteria, so that much of

the remineralization occurs just below the compensation

depth (the depth at which .photosynthesis equals

phytoplankton  respiration) (Russell-Hunter, 1970). In

nitrate renewal the organic nitrogen in feces, excreta,

and dead tissues is broken down and converted to

ammonium, then to nitrite, and finally to nitrate (see

Russell-Hunter, 1970, p. 161).

Another source of nitrogen in the

ammonia excreted by zooplankton.

particularly important after the

euphotic zone is

This source is

water column

stabilizes because it represents a continuous source of

recycled nitrogen while other forms of nitrogen in the

euphotic zone are being depleted, sometimes to

undetectable levels. Dugdale and Goering (1967) have

termed primary production associated with ammonia

—

—-

sea surface

sea bottom

Figure 5.1 Vertical distribution of bacteria compared
to that of phytoplankton and to location of the
euphotic zone (from Russell-Hunter, 1970).

assimilation “regenerated” production, while that

associated with nitrate assimilation they call “new”

production. The distinction is that only new sources,

such as nitrate from deep water or nitrogen fixation,

allow increases in population or production to be

passed on to higher trophic levels. The regenerated

ammonia, then, maintains existing populations during a

period when nitrates are limiting.

In addition to the limits placed on phytoplankton

growth by nutrient availability are the effects of

predation by zooplankton. As phytoplankton populations

Nutrients and Plankton 99
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in NEGOA, but their numbers are small (< I/ml in water;—
< 10/g in the sediments; Atlas, 1977). No data are—
presently available on hydrocarbon degradation rates in

NEGOA .

5.1.2 Phytoplankton

Koblentz-Mishke et al. (1970) summarized produc-

tivity estimates for the world’s oceans. Their data

for the Pacific Ocean (Fig. 5.2) indicate that the Gulf

of Alaska is among the most productive areas in the

Pacific Ocean, with primary productivity ranging from

180 120

PRIMARY PRODUCTION (mgCm-3day1)

Figure 5.2 Distribution of primary productivity in
the surface waters of the North Pacific (Koblentz-
Mishke et al., 1970).

10 to 100 mg C/mS/day in the surface waters and an

integrated productivity of 0.25 to 0.50 g C/mZ/day.

These highly productive areas are generally restricted

to coastal areas in the northwest Pacific, the Mexican

and Peruvian coasts, and the Alaskan Gulf.

Anderson et al. (1977) summarized the literature

from 1958 to 1974 on the factors influencing

phytoplankton distributions and production in the Gulf

of Alaska according to geographical and oceanographic

areas. Data on phytoplankton  in areas 17, 18, and 35

of NEGOA (Fig. 5.3) are discussed below.

OCSEAP-sponsored field studies of phytoplankton  in

NEGOA have been limited. Larrance et al. (1977)

sampled such phytoplankton  parameters as standing crop,

productivity, and nutrients at a series of stations in

NEGOA and Prince William Sound during October and

147” 146° 145° 144° 143° 142° 141° 140° 139° 138°

\\

OCEANOGRAPHIC ZONES
(~fter Dodimeadet al., 1963)

J/’ \ \ \ 18 ‘,------ 1, p~onl . ._.
- .

. . .,
\ ,----

..-
‘ .—\

(! <
‘. 2.000  r . .

I I 3 5
~ . . . ‘1., -> -(.,I I I I

147° 146° 145° 144” 143° 142° 141” 140° 139”

Figure 5.3 The oceanographic zones of the eastern subarctic Pacific (Anderson et al., 1977).

Nutrients and Plankton 101



3TAATIM

/tj
I

N
i

-S

0C
u

c
o

\
;

n
0 w

i-h
w. S

n u

rt
g m

l m m

Ci
WI !-t

Y
. m

P
. P

El
W

IA
.

0 l-h
n

u
.

D P a
tJ

‘s
n m UI

u-
l

N N
m

‘$
o h H

I
(n s- m

rf 0
0-’ (-D

l-h .
“

D
ep

th
 [

m
]

D
e
p
th

 
[d

D
ep

th
 

[m
l

ro o
d

s
o

0
0

ul o
s 0

-

<
--
*
.W

“ 
.
0

● 
✎ 

..O
. . . .

A
I

●9

I
N

I \

9

●
✍✍

✍✍
✍✍

✍

✘
✍

✍

m

I I I I I I I I

I I I I I I I I I I I (

>

\
\

-i

D
ep

th
 

[m
]

D
e
p
th

 
[m

]

m
.

●

●
 “

 ●
 O

/
’
4

m
1
:

.
/

.
—

9
-

”

. . . . . . . ● ●

. .
.O

”*
. . .

●

● .
●

✎

✎



functional change in the biological communities in the

area of the pollution source. Presently, there are not

sufficient data to quantify these predictions.

Gordon and Prouse (1973) found that hydrocarbon

levels in the Bedford Basin, Nova Scotia, were

sufficient to decrease photosynthesis rates by a few

percent. However, Dunstan et al. (1975) showed that

same species of phytoplankton are stimulated by

exposure to oil. In a natural, mixed population some

species would probably be stimulated while others would

be inhibited by the oil. This stimulation may actually

be a response to reduced competition from species that

are unable to function in the presence of the oil.

O’Connors et al. (1978) have suggested that such

changes in phytoplankton production and community

structure due to pollutants could alter trophic

relationships and decrease production of higher trophic

levels.

Zooplankton populations show large seasonal

fluctuations; they have generation times of weeks or

months. This suggests that effects of oil spills on

open-water populations would be negligible or

short-lived. After the Arrow spill in Chedabucto Bay,

Nova Scotia, as much as 10 percent of the oil in the

water column was found in zooplankton feces (Conover,

1971). However, no permanent effects on the

zooplankton were observed after either this spill or

the Torrey Canyon spill (Smith, 1968).
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CHAPTER 6 LITTORAL ZONE BIOTA

William H. Lippincott, SAI

This section deals with hard-bottom (rocky) and

soft-bottom (sand , mud) intertidal and bordering shal-

low subtidal zones in NEGOA. With O ft. (mean lower

low water: MLLW) as a reference, the NEGOA intertidal

zone extends maximally between -4 and +16 ft. Few

sites exhibit this large tidal range; wave-exposed

sites with regular, moderate-to-steep slopes usually

have the greatest vertical range. In these places

surge and splash elevate and spread out the intertidal

biotic zones. The depth limit of the shallow subtidal

is defined as 30 m, which corresponds to the seaward

limit of large, brown macroalgae or kelps.

The intertidal may be especially vulnerable to

damage from oil spills because of the tendency for

floating slicks to strand in that zone when they reach

the coast. The vulnerability at a given substrate will

depend on the substrate, wave exposure, the degree and

type of natural disturbance, and other factors.

6.1 REGIONAL OVERVIEW

The coastline of NEGOA has been mapped in detail

by aerial survey from Yakutat Bay to East Chugach

Island, off the southern Kenai Peninsula (Sears and

Zimmerman, 1977). The maps show major substrate types

as well as beach gradient and biological cover. Sub-

strate types throughout the area are mixed, with sand

predominating east of Hinchinbrook Island and rocky

substrates most prevalent west to the tip of the Kenai

Peninsula (Zimmerman et al., 1977, Fig. 6.1).

The principal substrate categories and their

extent are shown below for NEGOA, excluding Prince

William Sound.

Type Kilometers Percentage

Bedrock 297.7 19.9

Boulder 218.8 14.6

Gravel 321.8 21.5

Sand 540.6 36.1

Mud 117.5 7.8

Total 1496.4 99.9

is predominantly gravel,

bedrock. Beach gradients

the bay but are medium to

The exposed coast between

The substrate at Yakutat Bay

with some boulder, sand, and

are low in the outer parts of

vertical in the inner parts.

Yakutat Bay and Icy Bay consists mostly of sand, with

boulder and gravel near Malaspina Glacier. The sandy

parts have a low slope, while the boulder and gravel

beaches have a medium slope. Icy Bay beaches are a

mixture of sand, gravel, boulder, and bedrock. Slopes

are predominantly low , with moderate to vertical slopes

mainly in the western sides of the upper bay. The

beaches are low and sandy on the exposed coast between

Icy Bay and Kayak Island. Mud is the predominant

substrate east and west of the Copper River. Most of

the offshore islands have sand beaches, but Wingham and

Kayak Islands have predominantly bedrock coastline and

some boulder and gravel beaches. Slopes are low to

steep on Wingham Island but are

of the area. From Hinchinbrook

Chugach Island, beaches are

boulders, and gravel. Bedrock

beach types vary considerably

Slopes are low except west of

they are usually steep to vertical.

Eighteen study sites were surveyed in NEGOA from

1974 through 1976 (Fig. 6.1). They are representative

of most of the principal substrate types found in the

region.

low throughout the rest

Island we-stward to East

composed of bedrock,

predominates, although

throughout this area.

Montague Island, where

Tides in the NEGOA

ular diurnal. They are

toward mixed frequencies

Chew, 1971).

6.2 ROCKY INTERTIDAL

area are classified as irreg-

mainly diurnal with a tendency

during neap tides (0’Clair and

Rocky shores in NEGOA exhibit a conspicuous inter-

tidal zone of macroscopic seaweeds, seagrasses, and

invertebrate animals (Rosenthal et al., 1977). Many of

these organisms have broad latitudinal distributions,

occurring from the southern Bering Sea to California

and Baja California. In other instances the same

genera and ecologically functional roles are repre-

sented in subarctic and temperate environments, but the

species vary with latutude.

Vertical stratification or zonation is the most

conspicuous feature of rocky intertidal communities.

It has been the subject of much discussion by, for ex-

ample, Lewis (1964), Ricketts and Calvin (1968), and

Stephenson and Stephenson (1972). So variable is this

feature that the universal scheme of Stephenson and

Stephenson (1949) includes only three zones: the supra-

littoral fringe (or splash zone), characterized by

littorine snails and lichens; the eulittoral, charac-

terized by barnacles, mussels, limpets, and a host of

frondose, crustose, and turf-forming algae; and the

sublittoral fringe, populated by large brown algae, or

kelps, as well as large, mobile invertebrates.

Fine-scale zonal patterns vary from site to site

according to substrate stability, wave exposure, slope,

and slope regularity. These physical factors are the

stage on which biotic interactions are played. Many

species have their upward or inshore limits established

by tolerance to desiccation and their downward or

offshore limits by competitive exclusion (Connell,

1972) .
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EXbO2EDof large hummocks. Mytilus is an important competitor

for space that provides secondary interstitial space

and substrate for many small invertebrates. The bar-

nacle Balanus cariosus may occur throughout the lit-

toral zone, but is most prominent in the mid-littoral.

It is a significant competitor for space and provides

habitat for worms and other small invertebrates. Two

predatory snails of this subzone, Nucella lima and N..
lamellosa, feed on mussels and barnacles by drilling

through their shells.

Below the mid-littoral is a dense band of red

algae called the Rhodymenia subzone, named for its

principal component Rhodymenia (= Palmaria) palmata.

While this subzone is a prominent feature of the Gulf

of Alaska above 55°N, it is apparently absent at lower

latitudes in the north Pacific. These red seaweeds can

vary in density from scattered to thick; at their

heaviest densities they may exclude all barnacles,

snails, whelks, and limpets. Several other species

have their upper distributional limits in the

Rhodymenia subzone. The ephemeral green algae

Monostroma and Ulva may be common, especially if

Rhodymenia is not prominent. They are rapidly coloniz-

ing, leafy seaweeds often indicative of mechanical

disturbance. They are also found as epiphytes on old

Rhodymenia plants. Among the numerous chitons whose

distributions begin in the Rhodymenia subzone are the

leather chiton Katharina tunicata, the mossy chiton

Mopalia muscosa, and the lined chiton Tonicella

lineata. The last two tend to occur lower in the

intertidal than Katharina. Chitons are grazing herbi-

vores and are preyed upon by birds and sea stars. The

limpet Notoacmaea scutum, the

Leptasterias hexactis, and the

Cucumaria pseudocurata are also

Rhodymenia subzone, though their

bution extends above and below.

six-rayed sea star

small sea cucumber

often found in the

intertidal distri-

The true subtidal zone, or sublittoral fringe, has

its upper boundary at the lowest spring tides. The

large brown kelp Laminaria begins its dominance at the

shoreward extreme of this zone. Red, calcified

coralline algae also attain prominence in this zone.

These include erect articulated species such as

Bossiella or Corallina and encrusting forms such as

Lithothamnion. The corallines and other species also

occur in tide pools throughout the littoral and on

exposed rocks around MLLW, but not in their subtidal

abundances. The limpet Acmaea mitra is found only in

lower subtidal elevations and large tide pools. Large,

predatory sea stars and other invertebrates are also

important.

At any particular location this composite zonal

scheme may lack various components, exhibit a mosaic

character, or be modified by unusual numbers of one or

more organisms. The published work in NEGOA (Zimmerman

et al., 1977; O’Clair et al., 1978) is inadequate to

make comparisons between sites in this respect. How-

ever, one can see a general pattern in departures from

the composite scheme. The most zonally developed sites

are those on exposed , wave-swept coasts with moderately

sloping bedrock substrates and large boulders or hum-

mocks. Wave surge and reduced slope have the effect of

spreading out the zones and obscuring their interfaces

(Fig. 6.2; Ricketts and Calvin, 1968).

SHELTERED

2

3
--highest  high tide --- - - - - - - - - - - - -

1
:

4

1- ----------------------------------  Iowest low tide ----------------------

Figure 6.2 The displacement of zones with exposure.
Such displacement is often found on rocky headlands
(Ricketts and Calvin, 1968).

An example of this phenomenon is shown in the

diagram of vertical stratification at Latouche Point, a

rich rocky intertidal area (Fig. 6.3; O’Clair et al.,

1978). To the casual observer the subzones are often

more conspicuous than the data in the diagram suggest.

This is because recruitment of juvenile organisms to

the intertidal often occurs over a much broader ver-

tical range than the one the adults ultimately inhabit

after surviving competitive and physiologic stress. An

indication of relative

vertical interval would

nation; these data were

investigators’ reports.

abundance as a function of

give a better picture of zo-

not presented in the principal

Littoral Zone Biota 111
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Elevation (in feet)Figure 6.3 Distribution of selected plants and inver-
tebrates in l/16-m2 quadrats at Station 11 at Latouche
Point, September 1975 (0’Clair et al., 1978).

At one extreme of the slope continuum, the

horizontal bench, distance from low water assumes

importance in the absence of vertical relief. Figure

6.4 (Lebednik et al., 1971) shows the hypothetical flow

of water in such situations, which establishes the

Figure 6.4 The pattern of wave-induced water movement
over a littoral rock beach, showing (1) approaching
wave fronts, (2) area of breaking waves, (3) piling UP

of water on the outer beach, (4) shoreward and lateral
flow of water, and (5) return via channels between rock
benches (Lebednik et al., 1971).

gradient of wave and desiccation exposure. The seaward

end of the bench attenuates the force of incoming

waves, limiting the shock to inshore areas. In ad-

dition, however, the bench drains slowly, reducing the

stress of desiccation. The study site at Cape St.

Elias is representative of this topography. As de-

picted in Fig. 6.5 (0’Clair et al., 1978), the red

Figure 6.5 Horizontal and vertical distribution of
selected algae and invertebrates, Cape St. Elias,
Intertidal Station 4, September 1975 (0’Clair et al.,
1978).
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Table 6.3 Mean abundance (g wet weight/m2) of dominant macroalgae  on horizontal and vertical rocky substrates at NEGOA study sites surveyed September 1975.

KATALLA BAY:
HORIZONTAL ROCK SURFACE

Fucus distichus

MACLEOD HARBOR:
HORIZONTAL ROCK SIIRl?ACE

ANCHOR COVE:
AREA A HORIZONTAL ROCK

OCEAN CAPE:
VERTICAL ROCK SURFACE

Odonthalia floccosa
Alaria taeniata
Fucus distichus
Palmaria palmata
Alaria
Odonthalia
Phaeophyta
Fucus spiralis
Endocladia muricata
Ulva

SURFACE
481
412
303
272
261
201
190
125

Alaria marginata 644
Fucus distichus 554

783
394
368
253
222

85
42
35
26
25

191
84
29
23

Palmaria palmata
AlariaPorphyra

Palmaria palmata
Pterosiphonia bipinnata

Alaria taeniata 119
Pterosiphonia bipinnata 114
Odonthalia floccosa 112
Rhodomela larix 37

Fucus distichus
Odonthalia  floccosa
Ptilota filicina
Fucus spiralis
Halosaccion glandiforme
Corallinaceae

VERTICAL ROCK SURFACE
Fucus distichus
Odonthalia floccosa
Laminaria groenlandica
Palmaria  palmata
Bossiella
Pterosiphonia bipinnata

535
394
270
43
19
4

Alaria praelonga 36
Soranthera ulvoidea 10
Porphyra 4 Pylaiella littoralis 100

Alaria marginata 69
Polysiphonia pacifica 69

VERTICAL ROCK SURFACE
Fucus distichus 390

CAPE YAKATAGA:
AREA A HORIZONTAL ROCK SURFACE AREA B HORIZONTAL ROCK SURFACE

Odonthalia  floccosa
Fucus distichus
Pterosiphonia bipinnata
Halosaccion glandiforme
Porphyra
Pylaiella littoralis
Alaria taeniata
Soranthera ulvoidea
Fucus s~iralis

883
64o
376
273
218
203
194
178
143

Sphacelaria 4102
Palmaria palmata 383
Fucus distichus 219
Pylaiella littorals 159
Por~hvra 98

CAPE ST. ELIAS:
HORIZONTAL ROCK SURFACE

Odonthalia floccosa
Palmaria  palmata
Alaria marginata
Corallinaceae
Rhodomela larix
Laminaria groenlandica
Petrocelis middendorfii
Corallina vancouveriensis
Constantinea sim~lex

Porphyra 180
Odonthalia floccosa 27
Pterosiphonia bipinnata 25
Halosaccion  glandiforme 10
Navicula R

990
718
282
154
145
88
69
66
43
40
30

Rhodophyta i
Phaeophyta 1

;lach~sta fucicola 49
pha linza 45——
a floccosa 34

29

EnteromorI
Odonthali:
Ulva lactuca LATOUCHE POINT:

AREA A HORIZONTAL ROCK SIl_ItFACE
Fucus distichus 891

.—
Palmaria palmata 121
Odonthalia 74
Spongomorpha spinescens 40

AREA B HORIZONTAL ROCK
Fucus distichus
Pylaiella littorals
Odonthalia floccosa
Fucus spiralis
Elachista fucicola
Palmaria  palmata
Rhodomelaceae

SURFACE
1141
346
330
227
128
30
25

Neoptilota asple~ioides
Corallina

Zostera marina 775
Odonthalia floccosa 634

373
288
179

86
74

ANCHOR COVE:
AREA A VERTICAL ROCK SURFACE

Palmaria palmata
Ptilota filicina
Halosaccion glandiforme
Iridaea heterocarpa
Alaria taeniata

BOSWELL BAY:
VERTICAL ROCK SURFACE

Chlorophyta
Phaeophyta
Rhodophyta
Corallinaceae

Fucus spiralis
Palmaria palmata
Fucus distichus

2195
661
381
234
118
40
34
28
12
11

7

2.653
“.952
.121
.105

Pylaiella littoralis
Halosaccion glandiforme

Porphyra 19
Porphyra  perforata 10
Soranthera ulvoidea 5

Pterosiphonia bipinnata 60
Cryptosiphonia woodii 53
Rhodomelaceae 52 Alaria

Elachista  fucicola
Phaeophyta

HORIZONTAL ROCK SURFACE
Fucus distichus
Rhodomela larix
Halosaccion  saccatum
Alaria marginata
Halosaccion glandiforme
Alaria taeniata
Delesseriaceae
Odonthalia floccosa
Pterosiphonia bipinnata
Iridaea cornucopia

AREA B HORIZONTAL ROCK SURFACE
Iridaea 9218
Ptilota filicina 2088
Odonthalia floccosa 1113

AREA A VERTICAL ROCK SllRJ?ACE 1881
356
137
91
78
75
63
55
34
24

Enteromorpha linza 226
Palmaria palmata 195
Pylaiella littorals 148
Scytosyphon lomentaria 67
Rhodophyta 35
Chaetomorpha 29

Porphyra
Fucus
Iridaea cornucopia

458
405
360

Zostera marina
Neoptilota asplenioides
Laminaria groenlandica

Chlorophyta 23
Phaeophyta 19
Laminaria groenlandica 13
Alaria praelonga 11

Iridaea heterocarpa 227
Laminaria yezoensis 190

41
30
23

Iridaea cornucopia
Microcladia borealis
Bossiella plumosa
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Table 6.3 Mean abundance (g wet weight/m2) of dominant macroalgae on horizontal and vertical rocky substrates at NEGOA study sites surveyed September 1975.

KATALLA BAY:
HORIZONTAL ROCK SURFACE

Fucus distichus

MACLEOD HARBOR:
HORIZONTAL ROCK SURFACE

ANCHOR COVE:
AREA A HORIZONTAL ROCK

OCEAN CAPE:
VERTICAL ROCK SURFACE

Odonthalia floccosa
Alaria taeniata
Fucus distichus
Palmaria palmata
Alaria
Odonthalia
Phaeophyta
Fucus spiralis
Endocladia muricata
Ulva

SURFACE
481
412
303
272
261
201
190
125

Alaria marginata 644
Fucus distichus 554

783
394
368
253
222
85
42
35
26
25

191
84
29
23

Palmaria palmata
AlariaPorphyra

Palmaria palmata
Pterosiphonia bipinnata

Alaria taeniata 119
Pterosiphonia bipinnata 114
Odonthalia floccosa 112
Rhodomela larix 37

Fucus distichus
Odonthalia  floccosa
Ptilota filicina
Fucus spiralis
Halosaccion glandiforme
Corallinaceae

VERTICAL ROCK SURFACE
Fucus distichus
Odonthalia floccosa
Laminaria groenlandica
Palmaria  palmata
Bossiella
Pterosiphonia bipinnata

535
394
270
43
19
4

Alaria praelonga 36
Soranthera ulvoidea 10
Porphyra 4 Pylaiella littoralis 100

Alaria marginata 69
Polysiphonia pacifica 69

VERTICAL ROCK SURFACE
Fucus distichus 390

CAPE YAKATAGA:
AREA A HORIZONTAL ROCK SURFACE AREA B HORIZONTAL ROCK SURFACE

Odonthalia  floccosa
Fucus distichus
Pterosiphonia bipinnata
Halosaccion glandiforme
Porphyra
Pylaiella littoralis
Alaria taeniata
Soranthera ulvoidea
Fucus s~iralis

883
64o
376
273
218
203
194
178
143

Sphacelaria 4102
Palmaria palmata 383
Fucus distichus 219
Pylaiella littorals 159
Por~hvra 98

CAPE ST. ELIAS:
HORIZONTAL ROCK SURFACE

Odonthalia floccosa
Palmaria  palmata
Alaria marginata
Corallinaceae
Rhodomela larix
Laminaria groenlandica
Petrocelis middendorfii
Corallina vancouveriensis
Constantinea sim~lex

Porphyra 180
Odonthalia floccosa 27
Pterosiphonia bipinnata 25
Halosaccion  glandiforme 10
Navicula R

990
718
282
154
145
88
69
66
43
40
30

Rhodophyta i
Phaeophyta 1

;lach~sta fucicola 49
pha linza 45——
a floccosa 34

29

Enteromoq
Odonthali:
Ulva lactuca LATOUCHE POINT:

AREA A HORIZONTAL ROCK SURFACE
Fucus distichus 891

.—
Palmaria palmata 121
Odonthalia 74
Spongomorpha spinescens 40

AREA B HORIZONTAL ROCK
Fucus distichus
Pylaiella littorals
Odonthalia floccosa
Fucus spiralis
Elachista fucicola
Palmaria  palmata
Rhodomelaceae

SURFACE
1141
346
330
227
128
30
25

Neoptilota asple;ioides
Corallina

Zostera marina 775
Odonthalia floccosa 634

373
288
179
86
74

ANCHOR COVE:
AREA A VERTICAL ROCK SURFACE

Palmaria palmata
Ptilota filicina
Halosaccion glandiforme
Iridaea heterocarpa
Alaria taeniata

BOSWELL BAY:
VERTICAL ROCK SURFACE

Chlorophyta
Phaeophyta
Rhodophyta
Corallinaceae

Fucus spiralis
Palmaria palmata
Fucus distichus

2195
661
381
234
118
40
34
28
12
11
7

2.653
“.952
.121
.105

Pylaiella littoralis
Halosaccion glandiforme

Porphyra 19
Porphyra  perforata 10
Soranthera ulvoidea 5

Pterosiphonia bipinnata 60
Cryptosiphonia woodii 53
Rhodomelaceae 52 Alaria

Elachista  fucicola
Phaeophyta

HORIZONTAL ROCK SURFACE
Fucus distichus
Rhodomela larix
Halosaccion  saccatum
Alaria marginata
Halosaccion glandiforme
Alaria taeniata
Delesseriaceae
Odonthalia floccosa
Pterosiphonia bipinnata
Iridaea cornucopia

AREA B HORIZONTAL ROCK SURFACE
Iridaea 9218
Ptilota filicina 2088
Odonthalia floccosa 1113

AREA A VERTICAL ROCK SURJ?ACE 1881
356
137
91
78
75
63
55
34
24

Enteromorpha linza 226
Palmaria palmata 195
Pylaiella littorals 148
Scytosyphon lomentaria 67
Rhodophyta 35
Chaetomorpha 29

Porphyra
Fucus
Iridaea cornucopia

458
405
360

Zostera marina
Neoptilota asplenioides
Laminaria groenlandica

Chlorophyta 23
Phaeophyta 19
Laminaria groenlandica 13
Alaria praelonga 11

Iridaea heterocarpa 227
Laminaria yezoensis 190

41
30
23

Iridaea cornucopia
Microcladia borealis
Bossiella plumosa
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6.3 SHALLOW SUBTIDAL

Subtidal studies were conducted by Rosenthal et

al. (1977) at three of the intertidal sites: Latouche

Point, MacLeod Harbor, and Zaikof Bay. These sites are

on two of the large islands bordering the seaward edge

of Prince William Sound. They are representative of

the sublittoral zone, extending seaward to a depth of

about 30 m. Whereas the, intertidal zone is marked by

conspicuous and often regular zonal stratification, the

sublittoral is characterized by its lush growth of

marine plants. This is the zone of domination by the

kelps, or large brown seaweeds (phaeophytes), some of

which (e.g., bull kelp, Nereocystis luetkeana) grow

long enough to form a canopy or bed at the water sur-

face. Most of the biomass on rocky shores is found in

the sublittoral.

Marine plant communities are extremely productive

(see the reviewby Mann, 1973). The primary production

of the seaweed zone in St. Margaret’s Bay, Nova Scotia,

was estimated to be 1750 g C/mz/yr, which is about

three times the phytoplankton production of the bay

(Mann, 1972). This narrow band of high-density marine

plants is obviously important to the marine ecosystem

of Prince William Sound (Rosenthal et al., 1977).

Moreover, the forest-like larger kelps provide a home

for many invertebrate and fish species, some of commer-

cial or sport fishing importance.

Figure 6.6 is a schematic representation of some

of the trophic interrelationships of intertidal and

subtidal organisms. The food web reflects a generally

Figure 6.6 Food web for the rocky sublittoral zone at
Latouche Point (Rosenthal et al., 1977). Except for
the contribution of plant material to the organic
detritus, the arrows point to the organisms consumed.
In a diagram of energy flow the direction of the arrows
would be reversed.
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Table 6.5 Taxonomic composition and
at three subtidal study sites.

Species

L&w!!! c~ibros~ (p)
Laminaria groenlandica  (P)
Laminaria yezoensis  (P)
Pleurophycus  gardneri (P)
Desmarestia  vit-idis  (A)
Nereocystis  Iuetkeana  (A)
Costaria costata  (A)
Cymathere  triplicate (A)
Ralfsia spp. (P)
Encrusting coralline (P)
Micro cladia  borealis (?)
Constantine spp. (P)
Callophyllis  spp. (?)
Opuntiella californica (?)
Rbodymenia  spp. (?)
Hildenbrandia ? occidentals
Delesseria decipiens (A)
Ptilota filicina (?)
Microporina  borealis (A)
Flustrella gigantea (P)
Heteropora  sp. (P)
Balanus spp. (P)
Grammaria  sp.
Pycnopodla  helianthoides  (P)
Ortbasterias  koehleri (P)
Dermasterias  ‘a (P)
Crossaster papp Osus (P)
Henricia spp. (P)
Evasterias  troschelii  (P)
Fusitriton  oregonensis  (P)
Margaritas pupillus
Tonicella  spp. (P)
Acmaea mitra (P)
Thais canal iculata (P)
Searlesia  dira (P)
Calliostoma  ligature (P)
MUSCUIUS discors (A)
Musculus spp. (A)
Musculus  vernicosus  (A)
Tonicella  spp. (P)
Pagurus spp. (P)
Enhydra lutris  (P)
Halocynthia  aurantium  (P)
? Distaplia  occidentals (P)
Ophiopholis  aculeata (P)
Strongylocentrotus  spp. (P)

Key: (P) = perennial
(A) = annual
A = abundant
C . common
U . uncommon

Occurrence
1 2 3

A A A
A A C
A C C
A C C

- c
AC-
-c-
c - -
- c c
AAA
-c

c c c
- c c
cc-
-c-
-c-
-c-
c - -
c c c
-c
-c
-A
-c

c c c
- c c
c c c
c - c
c c c
-c
cc
-c

cc-
cc-
-c-
c--
c - -
-c

-c-
A - -
-c

A-A
c c c
-c-
c--
c--
uu -

Description

Brown alga
Brown alga
Brown alga
Brown alga
Brown alga
Brown alga
Brown alga
Brown alga
Brown alga
Red alga
Red alga
Red alga
Red alga
Red alga
Red alga
Red alga
Red alga
Red alga
Bryozoan
Bryozoan
Bryozoan
Barnacle
Hydroid
Sea star
Sea star
Sea star
Sea star
Sea star
Sea star
Snail
Snail
Snail
Snail
Snail
Snail
Snail
Mussel
Mussel
Mussel
Chiton
Hermit crab
Sea otter
Ascidian
Ascidian
Brittle star
Sea urchin

relative abundance

Tropbic Category

Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Producer
Suspension feeder
Suspension feeder
Suspension feeder
Suspension feeder
Suspension feeder
Predator
Predator
Predator
Predator
Suspension feeder/predator
Predator
Predator/scavenger
Herbivore
Herb ivo re
Herb ivo re
Predator
Predator
Herbivore
Suspension feeder
Suspension feeder
Suspension feeder
Herbivore
Herbivore/scavenger
Predator
Suspension feeder
Suspension feeder
Predator
Herbivore

1 Latouche  Point
2 MacLeod Harbor
3 Zaikof Bay

Seasonal changes were apparent at all three sites.

An example of the gross features of these changes is

presented schematically in Fig. 6.10 (Rosenthal et al.,

1977). Like canopy-forming kelps in temperate regions,

the Nereocystis canopy was seasonally reduced. But

unlike Macrocystis, which dies back in summer in Cali-

fornia, Nereocystis in NEGOA was at a minimum in win-

ter. Annual brown algae such as Nereocystis luetkeana,

-Cymathere triplicate, and Costaria costata began to

germinate in early spring, forming dense canopies or

stories by mid- to late summer. Severe dieback had

taken place by late fall of the same year. The peren-

nial kelps Agarum cribrosum, Laminaria spp., and

Pleurophycus gardneri, however, attained maximum stand-

ing stocks during late winter and early spring. The

abundance of epiphytic invertebrates also varied

seasonally during th

changes in seaweed

population of musse

Point was augmented

s year of study, corresponding to

abundance. As an example, the

Musculus vernicosus at Latouche

by heavy sets of spat (juveniles)

in the spring and summers of 1974 through 1976. By

late November during these years, the population had

declined. Similarly, the hydroids Campanularia,

Grammaria, and Abietinaria were least abundant in late

fall and winter at Zaikof Bay. These seasonal patterns

are assumed by Rosenthal et al. (1977) to be charac-

teristic of the NEGOA rocky subtidal zone.

Figure 6.9 Diagram of Zaikof Bay and its subtidal
vegetative canopies (Rosenthal et al., 1977).
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beds, such as the ~ beds of the Kodiak Island dominant soft-bottom infauna from the six study sites

area, were included in the sampling. Such inclusion, are given in Table 6.7.

if possible in NEGOA, would greatly increase estimates Salt marshes and tidal flats in the NEGOA area

of biomass. were not included in the OCSEAP sampling plan. Wolf et

Some evidence of vertical zonation was observed, al. (pers. comm.) found a rich and diverse biological

as shown in the diagram from Boswell Bay (Fig. 6.11; assemblage in an estuarine salt marsh in Kachemak Bay.

O’Clair et al., 1978).

1.  Oligochaeta

2. Paramoera columbiana

3 .  Littorina sitkana

4 .  Balanus  glandula

5. Enteromorpha S P.

6. Eteone longs

7 .  Capitella capitata

8 .  Macoma balthica

9. Spio sp.

10. Nephtys SPP .

11.  RhynchDspio  SP.

12. Heteromastus filiformis

1 3 .  Abarenicola pacifica

14. Tharyx S P.

15.  Glycinde p ic ta

1 6 .  Haploscoloplos  elongatus

17. Fabricia m i n u t a

10 3

T

BoswellBay
-t

2
5

/

1

Intertidal Station 6
0 0

September, 1974
1-1

- 5

Transect 1 ft m

The normalized abundances of Mytilus sp. was dominant on the tidal flats, and other

Elevation (in feet)

9.3 9.3 7.9 7.9 6.4 6.4 5.1 5.1 4.0 4.0 2.5 2.5 2.o 2.0 1.6 1.6 1.2 1.2 0.5 0.5 -0.7 -0.7 -2.1 -2.1

I 1 n n B 1 1 1 8 I I I I 1 I I I I I 1 1 1 I I
3 A  3 B  7 A  7 B  1 1 A  llB 1 5 A  1 5 B  19A 19B  2 3 A  2 3 B 2 7 A  2 7 B 3 1 A  3 1 B  3 5 A  3 5 B 3 9 A  3 9 B  4 3 A  4 3 B 4 7 A  4 7 B

Length of transect (in meters)

Figure” 6.11 Horizontal and vertical distribution of selected algae and invertebrates, Boswell Bay, Intertidal
Station 6, September 1974 (0’Clair et al., 1978).

Table 6.7 Mean abundance (counts/mz) of dominant
macroinvertebrates in soft substrates at NEGOA study
sites surveyed September 1975.

OCEAN CAPE: SOFT SUBSTRATE
Amphipoda
Archaeomysis grebnitzkii

CAPE YAKATAGA: SOFT SUBSTRATE
Mytilus edulis
Amphipoda

BOSWELL BAY: SOFT SUBSTRATE
Macoma balthica
Littorina sitkana
Eteone longa
Balanus
Pholoe minuta
Haploscoloplos elongatus
F@ elegans

MIDDLETON ISLAND: SOFT SUBSTRATE
Pygospio elegans
Capitellidae
Rhynchospio
Enchytraeidae
Abarenicola pacifica

150
125

450
125

1173
343
156
146
100
80
73

6700
3200
1600
1200
775

species of bivalves were common. These areas served as

hauling-out grounds for harbor seals and as feeding

grounds for numerous birds, including juvenile bald

eagles. Juvenile salmonids  of several species were

common in the streams that flowed through the salt

marsh, and sticklebacks and sculpins were abundant in

tidal pools on the marsh. Transport of detritus from

the marsh into the surrounding bay also appeared to be

substantial. It is likely that the salt marshes and

tidal flats of NEGOA are similarly productive and

important to the total productivity of the area.
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CHAPTER 7 INVERTEBRATES

D. R. Hancock, SAI

7.1 INTRODUCTION

Large populations of commercially valuable crabs,

shrimp, and molluscs inhabit the coastal and oceanic

waters of NIIGOA. A host of other invertebrate species

also occur

the basic

latter are

of NEGOA.

in the region. Many of these organisms are

food of dense populations of fishes. The

important prey of marine birds and mammals

A number of these fishes--salmon, halibut,

flounder, pollock, and cod-- are the principal target of

the Alaskan commercial fisheries. Thus a change in the

composition and size of invertebrate populations by

either natural events or human disturbance could affect

populations of fishes and, ultimately, those of marine

birds and mammals.

Species discussed in this review may be important

commercially, or they may dominate in biomass or number

of individuals. Some species have a major role as

“keystone” predators (Paine, 1969) or as the principal

prey of dominant species (as Euphausia spp. and

Thysanoessa spp. are the principal prey of capelin).

Other species are highly vulnerable to industrial

contamination.

In this review the greatest attention will be

devoted to invertebrate populations that occur in NEGOA

from Cape Fairweather to Prince William Sound. The

region includes the tracts leased in Sale No. 39 and

those proposed for sale in Lease Area No. 55 (see

Chapters 11 and 12). The region here considered as

NEGOA has been called by other names by different

research groups, depending on their own needs. For

example, the Southeastern, Yakutat,  and outer portions

of the Prince William Sound Shellfish Management

Districts lie within the bounds of NEGOA (ADF&G, 1979a,

1979b) . Similarly, Ronholt, et al. (1978) subdivided

NEGOA into Fairweather, Yakutat, and Prince William

Sound districts when reporting the catch rates of

crabs, shrimp, and fish. Differences in boundaries

have made it difficult to estimate the size and

distribution of populations and the extent of the

commercial harvest in NEGOA.

The 1978 ex-vessel value of the NEGOA commercial

shellfish catch was $10 million, not including the

minor fisheries for marine snails and octopi (ADF&G,

1979a, 1979b, 1979c, 1979d) The principal commercial

invertebrate species in NEGOA fishery is the Dungeness

crab; this species accounted for about 45 percent of

the entire Alaskan catch in 1978.

The remainder of this chapter is a summary of

information on the distribution, abundance, population

fluctuations, life histories , and feeding relationships

of key invertebrates. Commercially valuable and

noncommercial but ecologically valuable types are

discussed separately except in the section on feeding

relationships.

7.2 COMMERCIALLY IMPORTANT SPECIES

Distributions of commercially important

invertebrate species have been reported by the

International Pacific Halibut Commission (IPHC) ,

International North Pacific Fisheries Commission

INPFC), Bureau of Commercial Fisheries (BCF), National

Marine Fisheries Service (NMI?S), and other workers.

The Alaska Department of Fish and Game (ADF&G) reports

catch data of the commercial fisheries by region and

season. The recently formed North Pacific Fisheries

Management Council (NPFMC) also maintains commercial

statistics and regulates foreign and domestic catches.

Feder and Jewett (1979) collected epifauna from

stations occupied by the NMFS Resource Assessment trawl

survey of 1975. The distribution of trawling stations

is shown in Fig. 7.1. Ronholt et al. (1978) reviewed

the historical demersal fish and shellfish resources of

the Gulf of Alaska. Within NEGOA , epibenthic

invertebrates were trawled in highest densities south

and southeast of Prince William Sound, where the

average (geometric mean) catch per unit effort (CPUE)

was 119 kg/hr trawled during. a NMFS survey (1975-76;

Ronholt et al., 1978). Concomitant catch rates of

epibenthic invertebrates in the Yakutat and Fairweather

regions were 44 and 37 kg/hr trawled, respectively.

Major concentrations of invertebrates in NEGOA as

determined by trawls are shown in Fig. 7.2.

Invertebrates occurred in highest concentrations

(119 kg/hr trawled) on the inner continental shelf

(1-100 m water depths) but were less dense on the outer

shelf (58 kg/hr trawled: 101-200 m) and upper

continental slope (81 kg/hr: 201-400 m; Ronholt et

al. , 1978) .

Nearly 60 percent of the epifaunal invertebrates

taken during NMFS cruises (1975-76) in NEGOA were of
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1978).

147° 146° 145° 144° 143” 142” 141” 140” 139” 1.QFI”

jl

ic

i9

BENTHIC INVERTEBRATE CATCH RATE

❑ CPUE >50 kg/hr
● Sample station

SAMPLE SITE LOCATION

May-August 1975 and April 1976

Prince William Yalwtat ! \F~rwk!’=r ,

147° 146° 145° 144” 143” 142° 141” 140” 139”

61

50

j9

—

Invertebrates 127



2f1Lt c]-w
cocfl-
Bff1fGL cJ-w

c]--w
GSflTGLA9IJG

bTtJIC JLTWb

JCTTJ CLP
DHGU CLJJ
LTJLTGL (uot)

Lj
.

88IIEILIt&[

arLinomIixsv
.arUnom-8

imsesVf3ll

loinionob

oisuniino:

LIJtJL CLP

G2 w2 :ij
y 120 'JJUJ

Cb WOJ TG2 j JiocLsyI.1nsllp

srno.t[om8516m

ioWDmrnn±xm

ofziilgLroth1s

L
Db'

DOCJ JJLTWb

coorc 2p
OCG9U bru ap

brnj
CJTU0C

9x]qown
r idni

TUOLG

8,iU11irwib
myrnIoq

9Uq9JoD22 q
. bJAcLo

rD p2th2ruo1

9uqJ-112 pOLGJT
c9wcp

CUCGL w9r2çGL
CPT0UOGCGcG pqLq]

(D
0

'4I-
.

'-a

L
.

UU
o

0
B

-1toI-

0(JI-
J0

ID

ID0)

!-
t !s” (T
I w

CrY
rD cl-

l

Ii
’

u .

. .

Cfl I+ 0 !-l %

i-r) m
.!l o

-l
et

0 l-h
it

0 l-h

0 H-
1

0 0 0 : 0 i-h

0 l-h
.

.
u “.

0 l-
. ?D m

r. s
!
-
t
f
l

(
Q

V
U

)
*

cm m Q)
‘2

w m P
.

? n m

n l-i D d

4 V
I

m IJ .
,$

-J
n

N .

El
u

’ m
h Cn

0 m
0 i-h

U s C
L

m .
s P

.
1
-

(l)
u

m
0 M

n
Ci

!3 +-i m D
c m n u-

l
.

w

“

O
@

(D !-D 5
m

o M
o H

-I
.

0 n (-0 P s IJ
.

n io -4 IQ

i-f

b (x
?

u .

.
“

ix
L iD CA

P
.

UY
ill cm 5

hl w
0 I

.

El
E!

k “
0 *

i-t
.

l-
. w

=11

K ‘$ P 0 t-f 5 m m P

l-h (D EJ
cd P

.
N t-n

H HI
m G u’ (-D M ‘2

: 0 F
. 0 m

m (-f’
D u a

?0 m
.

m (-D
m l-i (D

l-l io m +J
m 1

-
.

‘s
M o != s ‘a

.

0% m
e

“
.

“
.

.
92 P CL

2
“

3-
.

l-h w m D- 0 ‘2

. 0-’ G !-f
w .

m
.



rnI OOr 08 08 08 00 0 01 

I I I I 

______J. . 

o 

.- 1W 

0 w Jo 

1W 0000 

. 
/ 

OF 001 

0 

oI,rn 00 08 0 00 OF 0 OF 

. .. 

147° 146° 145° 144° 143° 142° 141° 140° 139° 138°

“ ./”

TANNER CRAB

o No catch

●  c 2 5  kglhr
● 2 5 - 5 0  kg/hr

● >50 kg/hr

\--

I 1 \.,
.,. ,.. ,:,:

)
.,.::
- 59’

‘ \
● ;

“----
\ =.. ● ‘\----

$“-’--- %

‘,
200 ~ o .

- -- ——.. w . .
.,-

,,--

---\

1.

~o

2000 m
\\,

‘--’)  ~. ●

147° 146° 145° 144° 143” 142° 141° 140° 139”

Figure 7.3 Distribution and abundance of the Tanner crab, Chionoecetes bairdi, May-August 1975 and April 1976
(Ronholt et al., 1978).

Tagging studies have shown that except for spawning The timing of Tanner crab spawning has not been

migrations male Tanner crabs do not wander over great documented for NEGOA but is inferred from adjacent

distances (Watson, 1970). Though the distribution of areas. Tanner crabs move onto the inner Aleutian shelf

juvenile crabs in NEGOA has been described as to breed from January through May. AEIDC (1974) and

“widespread,” details of spatial and temporal Bright (1967) found that the species migrates into the

distributions have not yet been reported. Cook Inlet area to spawn from March through Septem-

ber with peak spawning occurring from May to August.

Tanner crabs spawn in the Copper River Delta in

April-May (Hilsinger, 1976). Mating commences shortly

after the puberty molt of the females while they are

still soft-shelled. Males breed when hard-shelled.

Successful matings between two hard-shelled adults can

occur (Hilsinger,  1976; NPFMC, 1978a), but they are

less common. Mature male Tanner crabs are probably

-attracted to females by chemical odors released by the

females, as is true of other decapods (Kittredge and

Takahashi, 1972).

After eggs have been extruded and fertilized,

females carry egg masses for about 11 months. Females

brood an average of 30,000-80,000 eggs (Eldridge,

1972a; ADF&G, 1975a), although egg masses of 318,000

ova have been recorded (Hilsinger, 1976). In the

Copper River area about 80 percent of the eggs are

produced by females of 90-109 mm CW (Hilsinger,  1976).

Larval release appears to coincide with plankton blooms

(ADF&G, 1975a). The development of Tanner crab larvae

takes from 12 to 90 days, depending on the temperature

(Pereyra et al., 1976). Other factors such as food

availability most assuredly affect the rate of

development also. Larvae molt through up to a dozen

instars, finally metamorphosing into juveniles.

Juvenile Tanner crabs generally resemble adults (ADF&G,

1975a) .

Information on natural mortality in Alaskan Tanner

crab stocks has been summarized by Pereyra et al.

(1976) . Disease, parasites and predation are the main

causes of death. Recently, mortality due to fishing

pressure was examined by the NPFMC (1978a).

Tanner crabs have been harvested commercially in

the Gulf of Alaska since 1951, but the domestic fishery

started on a large scale only in 1968 (Ronholt et al.,

1978) . Since then catches have increased yearly.
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Dungeness crabs mature. in about three years.

Mature males and females are approximately 140 mm and

100 mm Cw, respectively. Growth is more rapid in

Dungeness crabs than in Tanner or king crabs. Male

Dungeness crabs may reach 200 mm CW in eight years;

females attain 150 mm CW. Data on natural mortality is

lacking; these crabs presumably confront the same

natural hazards as Tanner and king crabs.

The Dungeness crab fishery is one of the oldest in

Alaska. These crabs are primarily sought by the U.S.

fishing fleet. They are caught by pots set in waters

7-50 m deep (Mayer, 1972). Peak catches occur from

June through September (ADF&G, 1971, 1974). The

fishing effort in nearshore waters decreases in autumn,

when crabs begin to move offshore (Mayer, 1972). In

the offshore waters north and west of Cape Spencer, the

fishery consists of a fleet of large vessels (>50 gt).

In these ships, crabs can be held alive for weeks in

storage tanks. These large crab vessels are usually

based in Washington ports.

About 23 percent of the entire Dungeness crab

catch in the Gulf of Alaska is taken in ADF&G’s  Yakutat

District, while another 11 percent is caught inside Icy

Bay. The Copper River Delta is a third area where

crabs are harvested in large amounts (Mayer, 1972;

Ronholt et al., 1978; ADF&G, 1979e). The area referred

to as NEGOA in this report comprises the ADF&G’s

Yakutat and Copper River Districts. During the 1978-79

fishing season, 851 mt of crab were sold at dockside in

the Yakutat District, with another 591 mt landed in the

Copper River District. The total ex-vessel value of

the catch was about $2.2 million (ADF&G, 1979e).

7.2.3 King crab

King crabs inhabit the North Pacific Ocean, Bering

Sea, and Okhotsk Sea (Marukawa, in Bright, 1967). In

NEGOA they are distributed from the sublittoral zone

(Powell and Nickerson, 1965; Feder and Jewett, 1979) to

water depths of about 275-350 m (Bright, 1967; ADF&G,

1976a) . The fishery typically takes adult crabs in

36-200 m of water (AEIDC, 1974). Juvenile crabs are

usually found at shallower depths than adults.

Adult crabs annually migrate into shallower areas

and onto offshore banks (Powell, 1964; McMullen, 1967).

During migrations males and females school separately.

Females precede males to the spawning grounds by a

month or so. While migrating shoreward, king crabs

probably follow submarine valleys on the shelf, which

often lead them to embayments (Powell, 1964; Powell and

Reynolds, 1965). King crabs may travel as far as

100-115 km to reach their breeding grounds (ADF&G,

1976a) .

In Kodiak waters king crabs breed from February

through May (Gray and Powell, 1966). They remain in

shallow waters after mating and spawning, returning to

deeper waters by early autumn (Powell and Reynolds,

1965) .

After spawning, females carry ova for 11 months

before larvae hatch. Fecundity increases with the size

of the female, the largest producing 400,000 eggs.

Larvae molt through four pelagic instars, then develop

into benthic-dwelling glaucothoe larvae, and finally

mature into a juvenile form that resembles the adult

(Weber and Miyahara, 1962; Eldridge, 1972b; Buck et

al., 1975) .

Juveniles live solitarily on rock substrates until

they are two to three years old. They are distributed

from the intertidal zone to 200 m of water (Rietze,

1975). At two to three years of age juveniles begin to

move about actively and aggregate} forming dense pods

of up to several thousand individuals (Powell and

Nickerson, 1965; Bright, 1967). With age, juveniles

again disperse, and, like adults, they move offshore to

feed in summer and fall, then return to shallower

waters in spring. King crabs reach maturity in their

fifth or sixth year (Rietze, 1975). Most studies have

shown that king crabs are segregated by sex and age

class on their offshore feeding grounds (literature

cited in Pereyra et al., 1976).

King crab growth , as measured by frequency of molt

and increase in size, is affected primarily by the

abundance of food (Bright, 1967) and by temperature

(Kurata, 1960). Crabs molt up to 11 times during their

first year. In the next two years they grow to about

60 mm in carapace length (CL). After three years of

age both sexes usually molt once a year. Males

increase about 16 mm CL per annum; females grow more

slowly. As they reach maximum size (100 mm CL for

males and 160 mm CL for females), king crabs molt only

once eve ry two or three years (Weber, 1967). King

crabs probably live for about 20 years (Pereyra  et al.,

1976) .

King crab populations appear to be low in NEGOA

(Eldridge, 1972b; Ronholt et al., 1978). During the

NMFS 1975-76 survey, less than 1 kg/hr of king crabs

were trawled in the Fairweather region, and no crabs

were taken in either the Yakutat or Prince William

region (Ronholt et al., 1978). Murturgo (1975) states

that king crabs occur in Prince William Sound on the

west side of Montague Island and that scattered

populations exist in many of the fiords of the sound

(Fig. 7.5). The actual abundance of king crab on the

NEGOA continental shelf and slope is unknown.

The king crab commercial fishery in NEGOA is
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7.2.4 Shrimp

Six species of pandalid shrimp belonging to two

genera (Pandalus and Pandalopsis) are found in NEGOA

(Table 7.1; see Fox, 1972 for a complete listing of

shrimp). Three species: Pandalus borealis (pink

shrimp), Pandalopsis  dispar (sidestripe shrimp), and

Pandalus jordani (ocean pink shrimp), constitute the

bulk of the fishery.

Adult pandalid shrimp inhabit waters from the

intertidal region to beyond the continental shelf.

Pink shrimp prefer depths of 75-180 m (Fox, 1972;

AEIDC, 1974) and are found mainly within 40 miles of

the coast in submarine ravines on muddy bottoms

(Ivanov,  1969). The preferred green mud habitat of

both pink and ocean pink shrimp may be correlated with

the high organic content of these clayey substrates

(Fox, 1972) and with the food of these species: small

benthic polychaetes, small clams, and small crustaceans

that are characteristic of mtiddy substrates. Pink

shrimp avoid water warmer than 8°C and are concentrated

between the 3.5 and 4.2°C isotherms (Ivanov, 1964).

Sidestripe shrimp probably prefer greater depths than

pink shrimp (Ronholt et al., 1978). Depth preferences

for other pandalid shrimp in NEGOA are unknown. One

difficulty in determining depth distributions is that

researchers in the past have lumped all shrimp

collected at sampling locations as “pandalids”.

Furthermore, although the shrimp species prefer

different habitats, these habitats have not been

sampled with the same effort. For example, smooth

muddy bottoms are sampled much more easily than

irregular, rocky substrates. Thus , information on the

distribution and relative abundance of the pandalids

inhabiting areas with irregular, rocky substrates is

scarce.

Pandalid shrimp occur throughout the Gulf of occasionally (Ronholt  et al., 1978). The distribution

Alaska and its larger bays and inlets (Fox, 1972). and abundance of pink shrimp in NEGOA are shown in Fig.

Pink shrimp were caught at 60 percent of the stations 7.6.

sampled in the gulf during 1975, sidestripe shrimp were Shrimp migrate seasonally. In August and

found at 39 percent, while ocean pink shrimp occurred September, they move into shallow bays and adjacent to

at 13 percent. Other shrimp were taken in trawls only islands to spawn (Ivanov, 1969). The migratory routes

1

61’

5 9

Figure
(Feder

0° 1 4 5 ° 140°

PINK SHRIMP

0 0 L“

61°

5 9 °

150° 1 4 5 ° 1 4 0 °

7.6 Distribution and abundance of the uink shrim~. Pandalus borealis. from NEGOA trawl survev. summer 1975
and Jewett, 1979).

-, . .

Invertebrates 133



swaqoIf2o(idgisw bnuo).iniIlosgisv
bnEiw±serf.ini(S-eôI)msitsq bsia9vtsr1
10 IlnOrI.i 10 .insDi5q Cgnn99iqs2noi9i .i6.iJJJ!Y
J&rD9mfnoD isñgh1 lo am ow.i9rIT.rbi&&1a&IA

.gi1 nI nwor{aAOM ni aqoIJD2 lo noLIDuboiq
8.V.gi'I ni nworla si93nbnuck bnno±.iudii.iib bns

.(8VI.is .iSodno5l)

irIgisgnirIai1 lo msy Iftil.iaifls±I8Iru

sri.i8ôL sisI uI.qoIIsD2 10 imbsbrxI 2192a9v
isJsi.i±nI.flnlRY lbaB9d oi bsbnsqx9 1(fsrIasl

wsib yt9viI9bq a.issm bnrIa boJrn V.gnibssDx9

3rLi)ru!wG .yñib qoII&sth ui .iasisin± sbiw
bbur13 bo .ini VSV bsbn&[ aI9aa9vI(isi iasvtrI I6sq

ni.2qoIIBDb!DurIanu bo.imbus aissm
29rI.isD BusyIIsinns b9fIail evsrl[3avo.iylno

.iasvisr1sitirioirl.iI'I mof.bsnibsbsvsri

iInoVI ui busztm8Cbogsivs us oi bsn±IDsb
.aisq1tsxDDN)issfb sthui:Bsriismsi aIsasv sxth

(.mmoD

eil.iiol aqoIJsbs±wdbo su.Isv. Isaasv-xssilT

CV-8er ui:noilfim.i-remoib bsgnsi yrlib nslasIA
b9bjjrla BuT .V-i: ui OOOOO.iriods o.i bsniJb iuid
moibIibss.iaaoibniroqsq siiq I9aasv-xB iuigisw
VI bus8VIgniinGuio.i 8QIui O8.O

md sdmsscI Bus usdmsvoM ui: ss[q looi gnirlail smoa
abnuoqOOOO8nsriisI sd o.i bs.isqx9sw .iasvsrl sth

.(.mmoD .aisq iisDN) sbsws.is.ia
srfi ]osru±IDSb 9tho.ibs.iIJdil.irloDauobslnsM

biq&i Bits svians.iu± a.iiis.ibs yxsulail qoIIsa ns126.IA
slasIA bo binO srlJ ui a±oia Bsiumul (I:.inBtuqoIBvsb

tiIsflom siminum o.i noasa bus sss yd noii&Lugsi (
;dsisnnsTbusgrub!irlgu&-sgbstbIsinsbiDni10

bnuo.q BslDrn1esq siiq Isaasv-xs Diis.ia iIsviisSt (C
svi.isruI suom o.inialeaaev qolisDa bot.ins(bus

.aiqtsi3M) dsfD lBnnsT bus grub! as rbua asiisulail
(.mluoD

nqonii&) 8qo1I6sn6visth&sw lo ab5dot6N
.isqsDoi swdsqi3moi1 iuo (ann±u&
9uginoN lo iabnuoInoinno IIEmrIiw±II
siw m OC1-iiibwjoI yII9nsg stabfl.bnfaI

IA ;EVIOVf±inn9H) siorla]10 riulOV-OEa±fqsb

10 suiixkm s al sitidiia beele'tq edT.(dSI sVI
sewqoIIsca.(s?SIUGA) bum bnEbn2 4evsig

MI4 erLJd belqmsa anoiaJa eth 10 znsisqEfs bnuol
.(VI ..Ise florino$i)VI iii

y[uL bnsauL ni anwqa qoSIs2 snvxsiLfsw silT
noiss±I±fle'[.nmuIoD issw erLi oinisismg griiasslex
bngs lsiid isflA.ainsmsvom tsiBw IDoI no abnsqsb
e[zUeaqofIa elinevute&fa Jsvmlino,i?lnsIq

smosd busIsvsg tobnsa1(s[bum noId-is1siq
ni siusm aqoIfs.(VQTsbiibIa) asbss1-ts.iIu1
ieuo oi odmu mor1 mmI-O8es yerlJ neilwase esirU
Isnoii±bbs bbssrUwoig aqoI1sA.nigism usda
rnunns isq sno]:osisi slcfsdoiqsisIIsila]:oabnsd

ernsilieioin:to]:evil ysm aqolJs.(0V1)IDinnsH)

ocimu moiu siom io mmsivassm ansm±Dsqa smog.3i55
.(0V1linneH) ni:gism Ileifa isiuo oi

aswS1iiiaqolisDalo,boiagnkbnsiasilT

m 00-0butrnoIW°8t-0t)im OOCJ is bemiias
.ie sqsD nsswisd bunol ineieq VV rliiw jadiqsb isisw
lo asisi rbisD sgsisvs mumixsM.ysaisiulsY bus asila
vInsswisd ieisw 10 m 001-0 ni belwsizr eisw irf\g,lr

US551S5ViJJ2 AOOM suns eth io.ayfl i&UnlsY bus
is florino5l)bslwsii siew aqollsa lorl\vlC sgsisvs

.(8Vr.ls
A003M ni bsiiolqxsllsiDismmoD need evsrl aqolls
nA .(V1 (sgbiibla) VJ iii nsged yierfakl5thSDnIa



5000 W

-

V

30

-'Ip. .

'% \_____

m

'OO

20 W!I040501010

100 Irn,20 00400 5012

s000

147° 146° 145° 144° 143” 142° 141° 140” 139° 1 ml”

SCALLOP
Mean annual production (ret) 1969-75

147° 146” 145° 144° 143° 142° 141” 140° 139”

Figure 7.7 Areas of high commercial harvest of
scallops by U.S. fishermen 1969-75 (Ronholt et al.,
1978) .

Invertebrates 135



mpe.o-t
mpF..F-6

mp Jt2 (qL uq GII Ta)
I1TUObGCcGU csrxrurie p0w TG

ET" 8 DcLPIIOU TJq pnuquc

i-s
 

00
 

00
0 

00
00

0 oo
o 

.0
 

00
0 

oo
 

O
o o 

oo
 . 

¼
.)

 ¼
.)

'..
) 

W

\ o
os

oo
0)

O
O

O
 C

)(
.

o0.1
00

00
ooThoJ0

o00
0

fr1OITU8IFIT2Iqj

—

o 0



C

5oo-p

:1rri
Joo

C

E
.4-I

7.2.6 Clams

Razor clams, butter clams, surf clams, and cockles

all occur in NEGOA, but the total clam resource is

unknown. Clams harvested in Alaska have traditionally

comprised three intertidal species: the razor clam,

Siliqua patula, which accounts for about 95 percent of

the catch; the butter clam, Saxidomus gigantea, and the

cockle, Clinocardium nuttallii. Other species of clams

are abundant but unexploited: the littleneck clam,

Protothaca staminea; the softshell, @ arenaria; and

the pink neck or redneck clam, Spisula polynyma.

Information on stocks, recruitment, and paralytic

shellfish poisoning is available only for the razor

clam (Paul and Feder, 1976).

Razor clams are found from mean low water to 54 m

depths (Kaiser and Koenigsberg, 1977) in sandy, exposed

beaches which contain some glacial silt. Such habitat

is found in Orca Inlet and the Copper River Delta

(Nosho, 1972). This species spawns in summer and

requires specific water temperatures for incubation and

fertilization (Nickerson, 1975). The razor clam is

prolific (6-10 million eggs) but also has high rates of

larval and juvenile mortality. Juveniles settle into

the top few centimeters of windswept beaches and are

subjected to frequent heavy surf (Kaiser and

Koenigsberg, 1977). Razor clams burrow actively as

juveniles and may also migrate inshore, offshore, and

along the coast. By their third year however, they are

more sedentary and remain so for the rest of their

lives. Maturity is at 4.5-5.5 years and a length of

115 mm. They may live more than 15 years (Nosho,

1972).

Razor clams have been traditionally

Orca Inlet in Prince William Sound and the

Flats/Controller Bay areas. The 1978

harvested in

Copper River

razor clam

harvest was 14 mt, most of which was sold as Dungeness

crab bait (ADF&G, 1979b). Catch data (Fig. 7.9) show a

marked decrease in the razor clam harvest in the Prince

William Sound area. The decreased harvest has been

attributed to decreased survival of juvenile razor

clams caused by changes in the substrate. Deposition

by the Copper River and uplifting caused by the’ 1964

earthquake are thought to be the major causes of the

substrate changes (ADF&G, 1979b).

RAZOR CLAM HARVEST

1 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0  7 1  7 2 7 3 7 4 7 5 7 6 7 7 7 8

Year

Figure 7.9 Razor clam harvest, Prince William Sound
Area 1960-78 (ADF&G, 1979b).

Butter clams occur in 0-10 m of water in

well-protected bays on a mixed gravel, sand, and mud

substrate (Paul and Feder, 1976). Cockles are often

found in eelgrass beds (Nosho, 1972; Paul and Feder,

1976) . Both species occur in harvestable quantitites

near Cordova in Prince William Sound (ADF&G, 1975a).

At present there is no commercial fishery of hardshell

clams in NEGOA. However, the State of Alaska plans to

initiate a fishery (ADF&G, 1979b).

7.3 NONCOMMERCIAL INVERTEBRATES

A large variety of

commercial value inhabit

Sound, and the coastal

invertebrates of no direct

the gulf, Prince William

bays (Table 7 .2). These

invertebrates are important as food for fish and

crustaceans of commercial importance (Alton, 1974) and

in decomposition and nutrient recycling. The presence

of benthic infauna may also increase the stability of

the substrate. The biomass of invertebrates can be

very high. Many benthic invertebrates are sessile and

long-lived and are sensitive to pollution of their

environment by heavy metals, hydrocarbons, or other

organic compounds. Adequate knowledge of these

invertebrates is important to predict the effects of

OCS development.

Current knowledge of the noncommercial

invertebrates in the Gulf of Alaska comes from studies

of the northwestern part of the gulf, The benthic

fauna of NEGOA has not been as well studied as those of

the Bering Sea, Aleutian chain, and northwestern gulf.

The benthic fauna of the Gulf of Alaska was first

investigated by Steller in 1741 (Shevtsov, 1964a) .

However, the Albatross expedition (1903-1905), Harriman

expeditions in 1910 and 1911, and the American-Alaskan

crab expeditions (1940 and 1941) gathered the first

detailed systematic information on the benthic fauna of

the region. Although much of the data from earlier

Soviet workers is not available, several summaries of

their findings provide background information on NEGOA

(Vinogradov, 1964; Shevtsov,’1964a, 1964b).

Recent OCSEAP studies on NEGOA have contributed to

our knowledge of the abundance, distribution,
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of Alaska are

physiography and

sediment sources

of the Bergin,

related in turn to the submarine

currents of the region. The principal

are the Copper River and the drainages

Guyot , and Malaspina Glaciers, which

supply silts and clay to the gulf. The fine sediment

is transported in broad plumes offshore and westward,

except in the Kayak gyre area. On banks, the sides of

canyons, and the continental slope sedimentation rates

are likely to be lower. Feder and Matheke (1979) found

that mobile deposit-feeders such as polychaetes are

characteristic of the silt-clay sediments of many

inshore stations. Suspension-feeders are at a

disadvantage in these

resuspended fine-grained

their feeding structures.

abundance, and diversity

of increasing substrate

areas because the readily

sediments can easily clog

In NEGOA, biomass, numerical

appear to be greater in areas

heterogeneity, such as Tarr

Bank, Hinchinbrook  Entrance, and the continental slope,

where greater amounts of sand and gravel are mixed with

the fine sediments (Feder et al., 1976; Feder, 1977;

Feder and Matheke, 1979). Substrates with more sand

and gravel provide less hazard of siltation and more

suitable locations for permanent attachment of

suspension-feeding and sessile organisms.

Among the epifauna, highest densities of pink

shrimp (Pandalus borealis), the brittle star Ophiura

sarsi, and the sea star Ctenodiscus crispatus were

recorded near the Copper River Delta southeast of Kayak

Island (F’eder, 1977). Little is known of the

productivity of this area, but secondary production is

probably high as a result of nutrients supplied by the

Copper River and by gyres which extend vertically from

the surface to the substrate (Jewett and Feder, 1976).

Faunal assemblages at two other sampling areas

were distinctive (Jewett and Feder, 1976). At a

location immediately south of Hinchinbrook Entrance,

diversity (47 spp.) was high. The epifauna included 14

species of crustaceans, 13 echinoderms, and 13

molluscs. Seven species of fish, including numerous

Pacific halibut, were also caught by the trawl. At

another site immediately west of Icy Bay, the samples

were characterized by the paucity of epifaunal

invertebrates. Instead, three species of fishes

(starry flounder, walleye pollock, and butter sole)

accounted for nearly all the biomass trawled. Starry

flounder predominated in the catch. All the stomachs

were full and contained large quantities of clams

(Yoldia seminuda, Siliqua sloati, and Macoma

dexiosttera). As noted in section 7.2, the Tanner crab

(Chionoecetes bairdi) accounted for more than 66

percent by weight of the epifaunal biomass. Pink

shrimp (Pandalus borealis) accounted for almost 3

percent. The third most common crustacean was the box

crab (Lopholithodes  foraminatus).  At most stations

numerous echinoderms were taken, but each species was

usually represented by only a few individuals. The

exceptions were a brittle star (Ophiura sarsi), two sea

stars (Ctenodiscus crispatus and Pycnopodia

helianthoides) , and a heart urchin (Brisaster

townsendi) , which were all found in large numbers. Sea

cucumbers occurred at only seven stations, yet

constituted nearly 3 percent of the total epibenthic

biomass. The weathervane scallop (Patinopecten

caurinus) accounted for 2 percent of the total biomass.

The whelk (Neptunea lyrata) and the Oregon triton

(Fusitriton oregonensis) were the most common molluscs

(Feder and Jewett, 1978). The distribution and

relative abundance of selected epibenthic species are-

shown in Figs. 7.11-7.13. Table 7.3 shows the percent

composition by weight of the dominant invertebrates

collected in NEGOA.
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7.4 NEKTONIC INVERTEBRATES

Large, free-swimming invertebrates such as squid,

euphausiids, pelagic shrimp, coelenterates, and mysids

are distributed throughout NEGOA. Walleye pollock,

Pacific cod, flatfishes , and salmon all rely heavily on

these organisms for food (see Chapter 8 for details),

as do some marine birds (Chapter 9) and mammals

(Chapter 10). Extensive data on the distribution,

abundance, and population dynamics of nektonic

invertebrates in the Gulf of Alaska are lacking. Some

information is available from the Japanese and Soviet

literature, but it is mostly anecdotal.

7.4.1 Cephalopods

Squid are preyed upon by a variety of commercially

important species of fish and whales. Squid and octopi

are also important predators of fish and shellfish.

Because they are fast swimmers, they easily avoid

trawls and nets and quantitative estimates of their

abundance and biomass are not yet known.

Little is known of the life histories of the squid

in NEGOA and adjacent waters (Akimushkin, 1965). Sexes

are separate, copulation occurs by transfer of

spermatophores from male to female. The eggs are

attached to the bottom or to algae or seagrass.

Females protect the eggs and fast during this period.

In California squid eggs mature in about 30 days

(MacGinitie and

pelagic octopods

Cephalopods

MacGinitie, 1968) . Eggs of some

are brooded in the mantle cavity.

are stenohaline, requiring high

salinities (30 O/oo) and unpolluted water (Akimushkin,

1965) . A small incidental Japanese squid fishery

occurs in the Bering Sea and the Gulf of Alaska;

however, catch statistics are currently unavailable.

Jefferts (pers. comm.) is studying squid from the

North Pacific Ocean; however, most of his specimens

were collected incidentally to fishery catches and will

provide little quantitative information on distribution

and abundance.

7.4.2 Euphausiids

Euphausiids are important members of NEGOA food

webs and are the major prey of several species of

marine birds and mammals (see Chapters 9 and 10). The

distributions of Gulf of Alaska species, based on

collections made by the International Fisheries

Commission in 1929-41 have been reported by Banner

(1949) . The predominant species in NEGOA are Euphausia

pacifica, Thysanoessa inermis, T. longipes, T. raschii,—
and T. spinifera. In the southeastern Bering Sea T.— —
longipes was most abundant in the open ocean, T.—
inermis was most abundant on the outer shelf, and T..
raschii was most abundant on the central shelf.

In the Prince William Sound, ~. longipes were the

most numerous euphausiid (density: l-3/m3). The i r

maximum depth during the day was 300 m, and no animals

were found above 100 m. Adults migrated vertically.

At night they were found in between O and 50 m of

water, with maximum concentrations between 25 and 50 m.

Euphausiid juveniles were abundant (2-3/m3) and did not

appear to migrate vertically (Damkaer, 1976).

7.5 BENTHIC COMMUNITIES

Quantitative descriptions of benthic communities

can provide important insights into the structure and

population dynamics of invertebrate populations.

Understanding structural components of benthic assem-

blages (biomass, species composition, diversity, popu-

lation fluctuations, and trophic complexes) is

necessary to estimate the food resource of fishes

(Thorson, 1957) and provides a powerful tool in evalu-

ating faunal changes brought about by both acute and

chronic environmental perturbations. High-resolution

community assessment requires close attention to both

the sampling design and to the selection of

quantitative samples. Some quantitative information on

the subtidal infaunal benthic assemblages is available

for NEGOA between Yakutat and Resurrection Bays (Feder,

1977; Feder et al., 1976; Feder and Matheke, 1979).

Epifaunal community structure is less well known, but

appears to be roughly correlated with substrate type.

As substrate type changes rapidly with short distances

in the Gulf of Alaska (Ronholt et al., 1978), community

composition would be expected to exhibit sharp

gradients.

The infauna was sampled with a Van Veen grab

sampler at 40 stations along seven transects in NEGOA.

Recurrent group analysis on these data showed that the

stations sort into four major groups of similar species

composition (Fig. 7.14). The species groupings

frequently appeared to have specific substrate

affinities (Feder, 1977; Feder and Matheke, 1979]. One

infaunal species grouping occupied nearshore sites on

the continental shelf with predominantly silt-clay

sediments. Deposit-feeding invertebrates predominated;

these were also present at all other sites except those

rocky or sandy sites with very low concentrations of

silt and clay. Another infaunal grouping occurred at

Hinchinbrook Entrance, where the sediments were about

28 percent sand mixed with silt and clay. The two

groupings had similar species composition, but the

biomass and numerical abundance were greater at

Hinchinbrook Entrance.
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energy flows through the ecosystem. They are

constructed by the analysis of the gut contents of

organisms and, when possible, by directly observing

their feeding activities. Food webs of marine

organisms demonstrate dependencies among infauna,

epifauna,  pelagic fishes, birds, and mammals. Although

they are oversimplifications of reality, they help

identify critical pathways in ecological systems and

are useful for understanding the transfer and storage

of industrial contaminants in a community of marine

organisms.

Feeding studies in NEGOA, Lower Cook Inlet, and

two bays on Kodiak Island (Feder, 1977; Feder and

Jewett, 1977) demonstrate the importance of benthic

infaunal invertebrates in the diet of commercially

valuable crabs and demersal fishes.

Feeding information presented here is often not

site-specific for NEGOA but has been extrapolated from

contiguous areas such as the Lower Cook Inlet and the

Kodiak shelf. Although general feeding patterns are

similar, regional differences have been demonstrated

(Feder and Jewett, 1979). Most information concerns

the food and feeding of the adult stages of

commercially important species. Little information

exists for the larvae and juvenile stages of most

benthic invertebrate species.

Inferring trophic relationships from gut content

analysis has limitations. Many soft-bodied infaunal

forms may be highly significant items in epifaunal

diets, but are digested before they can be identified.

The “gastric mill” of crustaceans rapidly grinds most

food into unidentifiable pieces. The paucity of

feeding information for benthic invertebrates in NEGOA

has necessitated extrapolation of feeding data from

adjacent areas. There are inherent uncertainties in

making such extrapolations because the diets of many

species are known to vary spatially and temporally.

Feder and Jewett (1979) found that king crabs from

Izhut Bay ate mostly fishes while crabs from Kiliuda

Bay preyed primarily on molluscs, specifically clams.

More information is needed on the food habits of

the major commercial species of NEGOA, particularly

those of female and juvenile crabs, on important

predators, and on seasonal changes in diet (collections

were

prey

rate,

with

made only in March and in June-August). Since

density often regulates both diet and feeding

feeding studies should be conducted concurrently

quantitative studies of distribution and

abundance. Such studies coupled with studies designed

to determine feeding rates would aid in understanding

the carrying capacity of the NEGOA marine environment

and provide a basis for evaluating stresses on the

environment.

7.6.1 Tanner crab

Tanner crab (Chionoecetes bairdi) larvae prey on

other planktonic organisms. Juveniles eat diatoms,

algae and hydroids (Bright, 1967), and detritus (ADF&G,

1975a) . Adults are more opportunistic but prefer

molluscs, echinoids, polychaetes, barnacles, and

shrimp. The food of Tanner crabs includes four phyla

and 17 genera, with clams, hermit crabs, and barnacles

being the principal food items (Feder and Jewett, 1979;

Paul et al., 1979). The diet of crabs in Kodiak waters

differs from that of crabs in Cook Inlet (Feder and

Jewett, 1979; Paul et al., 1979) . The large

hardshelled molluscs and echinoderms consumed by king

crabs are rarely seen in adult Tanner crabs (Bright,

1967 ; Feder, unpub.); this may be an example of

resource partitioning that allows king and Tanner crabs

to occupy the same areas at the same time. Amphipods

prey on Tanner crab eggs (Hilsinger, 1976); a variety

of fishes eat juvenile Tanner crabs. Octopus, gadids,

liparids, and yellowfin sole eat adult crabs (Pereyra

et al., 1976; Feder and Jewett, 1977).

7.6.2 Dungeness crab

Dungeness crabs feed on shrimp, crabs, barnacles,

bivalves, and polychaetes (Hoopes, 1973), but appear to

prefer clams (Mayer, 1972) . Predators of Dungeness

crab larvae include herring, salmon? and smelt. Adult

crabs are eaten by Pacific halibut, gadids, sculpins,

and rock fishes (Mayer, 1972).

7.6.3 King crab

King crab larvae consume mostly diatoms and

barnacle nauplii. Juveniles eat large numbers of

diatoms; Bright (1967) found them in 4 percent of the

crab stomachs he examined. Juvenile king crabs also

eat algae, sponges, ostracods, harpacticoid copepods,

polychaetes, small clams, gastropod, and echinoids.

Adults are omnivorous, taking molluscs, echinoderms>

other crustaceans, polychaetes, coelenterates, algae,

and fishes (Bright, 1967; Pereyra et al., 1976; and

Feder, 1977). King crabs have few predators as adults.

Walleye pollock, Pacific cod, and pacific halibut are

known predators (AEIDC, 1974; Pereyra et al., 1976;

IPHC , 1978) , and o the r gadids, scorpaenids, and

elasmobranchs are suspected. Adult crabs are most

susceptible to predation just after molting, when their

shells are still soft.

7.6.4 Shrimp

Pandalid shrimp larvae feed on zooplankton,
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ingens, Pleuroncodes

Callinectes  sapidus

Pearson and Olla,

Spirontocaris  taylori

quantities of crude

feeding behavior in

planipes, Cancer magister, and

(Fuzessery and Childress, 1975;

1979a, 1979b) ; and shrimp (

and Penaeus merguiensis). Minute

oil were sufficient to affect

the crab, shrimp, and lobsters.

American lobsters were attracted to and consumed

food contaminated with oil derivatives (Atema and

Stein, 1974). Although king, Tanner, and Dungeness

crab may respond similarly, recent studies suggest that

oil affects crabs differently. Callinectes sapidus

detected naphthalene at 10-7 mg/1 (Pearson and Olla,

1979a), and exposure to low levels of petroleum

hydrocarbons interfered with sensory cues in the

Dungeness crab (Pearson, pers. comm.). Feeding

efficiency declined (Basch, pers. comm.) and in some

instances food was avoided entirely. In an actual oil

spill crabs might thus be at a competitive disadvantage

in the natural environment.

Water-soluble fractions of oil impaired

respiration in certain shrimp species (F. G. Johnson,

1977); spot shrimp were narcotized and eventually died

(Sanborn and Malins, 1977). As in other crustaceans,

molting may be disrupted and mortality increased by

exposure to oil and its derivatives.

OCS development in NEGOA increases the likelihood

of industrial contamination of the marine environment.

The severity of contamination in a given area

on the amount of contaminant released,

conditions, and a host of other factors.

construction and exploration, the most likely

depends

weather

During

type of

contamination would be localized, chronic, low-level

pollution around oil platforms. Construction wastes

and drilling muds could settle to the substrate and

smother some species, predominantly sessile forms.

Some deposit-feeders would probably ingest these

wastes, but it is not known how they would be affected. In an oil well blowout or tanker accident, larger

The species composition in the vicinity of the quantities of hazardous material could be carried

platforms would probably change. Using in situ models, downstream or drift to the substrate over a wide area.——
Atlas et al. (1978) showed that after a 60-day exposure The pollutant could admix with the fine-grained

to crude oils amphipods were much less abundant in sediments. As the chemical activity of the pollutant

contaminated sediments while some polychaetes  were will vary with physical location, temperature, depth,

attracted to the area. and the nature of the sediment, its effects on the

biota are difficult to predict. Deposit-feeders in the

infauna and epifauna probably would ingest some of the

contaminants and transfer them to detritus-based food

chains. King and Tanner crabs are known to feed

extensively on deposit-feeding clams (Feder and Jewett,

1979; Feder et al., 1979). Thus, a large oil spill in

NEGOA would probably have both direct and indirect

deleterious effects on local crab and shrimp

populations.

The effects of OCS development on the nearshore

benthos would probably be more severe and apparent than

on offshore populations. If petroleum products were

discharged inshore, some soluble or insoluble mixture

of hydrocarbons would be borne by currents into coastal

embayments. The pollutants would probably become

stranded on shore, adhere to rotted vegetation or

algae, and settle out

different hydrocarbons

different rates, the

become chronically

onto the substrate. Since the

would be breaking down at

resident organisms would thus

contaminated by varying

concentrations and forms of hydrocarbons.

The preference of Dungeness crab for shallow-water

muddy habitats (Hoopesj 1973) during spring and summer

and when they are molting makes them particularly

vulnerable to direct fouling by oil. An oil spill or

even the chronic, low-level oil seepage expected to

come from oil platform operations could threaten the

survival of these crabs. Oil fractions could damage

their gill membranes as they do those of king crabs
.—
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CHAPTER 8 FISH

G.R. Tamm, SAI

8.1 INTRODUCTION

Continental shelf and slope waters in NEGOA are

biologically productive. Large populations of salmon,

herring, pollock, halibut, and other groundfish use

these waters as their principal spawning, rearing, and

foraging grounds. Coastal fiords and embayments are

the nursery areas for many key pelagic (e.g., salmon,

herring, capelin) and benthic (e.g., halibut, pollock,

cod) fishes that are far-ranging as adults. Migratory

routes of economically important stocks from other

Alaskan regions (e.g., Bristol Bay sockeye salmon,

Unimak Pacific ocean perch, southeastern Alaskan

Pacific halibut) lie along the outer continental shelf

of NEGOA.

The oil industry and BLM are considering the

leasing of 792,000 hectares (mean case) of offshore

tracts in the Yakutat-Fairweather area for Ocs

development. These tracts are located 6 to 93 km from

shore in 30 to 400 m of water. The center of

land-based operations will be the city of Yakutat.

Lease Area No. 55 sales are scheduled for October 1980.

Potential conflicts between exploration, refinery, and

transportation of gas and oil and the fishing industry

are major issues that resource managers and the Alaskan

populace must face. These decisions will be aided by

the past experiences of the fishing industry, coastal

cities, and the oil industry in the development of the

Sale No. 39 lease tracts to the north, between Icy Bay

and Kayak Island.

A thorough understanding of the fish populations

is one requisite to assess the consequences of

development on the NEGOA shelf. Knowledge of the life

histories, seasonal distributions, population dynamics,

and feeding relationships of fishes will allow

researchers to predict the vulnerability and

sensitivity of species to environmental disturbances.

It can also be used by resource managers in

decision-making and in minimizing resource conflicts.

Where to build an LNG plant or how to route tanker

traffic so as to minimize disturbance to commercial

fishing are examples of the kinds of decisions which

will have to be made.

This chapter provides an overview of fish

populations in NEGOA and briefly describes the extent

and value of the commercial fisheries. Information on

fishes of commercial value or of potential commercial

value, as well as ecologically important species, is

emphasized. Fish populations and commercial fisheries

within the entire gulf will be reviewed, but emphasis

will be placed on those lying within the area bounded

by Cape Suckling on the north and Cape Fairweather on

the south.

8.2 DISTRIBUTION,

8.2.1 Introduction

ABUNDANCE, AND POPULATION DYNAMICS

The type and abundance of fishes in NEGOA change

dramatically with physiography, depth, current regime,

substrate seasonal fluctuations in temperature,

salinity, and a host of biological factors. In

general, the nearshore marine environment in NEGOA is

less complex than that of the Kodiak and Cook Inlet

regions. Large amounts of sediment are washed down

from the Malaspina, Bering, and Novatak glaciers into

shallow water, where they are transported northward and

seaward by coastal currents. The sublittoral substrate

comprises mainly coarse sand and gravel and is

relatively unstable. Consequently, the fish fauna

found along the shores of NEGOA from Cape Suckling to

Cape Fairweather is not particularly diverse.

Occasional rocky heavily vegetated areas have suf-

ficient stable shelter and an adequate assortment of

prey to support locally complex fish associations.

Several large bays (Yakutat, Icy, Dry, and Lituya)

along the coast provide a more varied habitat, and thus

more niches for a greater number of fish species. The

continental shelf of NEGOA varies in width from 40 to

100 km. The Fairweather Ground, Tarr Bank, and

Middleton platform are the major rises; the Yakutat,

Alsek, and Bering Troughs the major depressions that

cross the shelf. These physiographic features cause

the prevailing bottom currents to change velocity and

direction, affect the distribution of sediments and

associated infauna, and thereby influence the

distribution of fish fauna. Beyond the shelf the sea-

floor slopes down steeply into the Aleutian trench

(Fig. 2.3). The irregularity of slope topography,

water depths, substrate types, and benthos within

relatively short distances provide many potential

niches for marine fishes.

The preferred habitats of many marine fishes found

in NIGOA waters vary with life stage and season. For

instance, immature salmonids feed in oceanic surface

waters hundreds of kilometers beyond Alaskan shores,

yet these anadromous fishes are abundant as maturing

adults in coastal waters from June through September

each year, staging for their spawning runs (ADF&G,

1976a) . Salmon smelts emigrate in spring and summer

from freshwater streams and lakes into estuaries, where

they remain from several

migrating to the open ocean

1977; Sibert, 1979; Healey,

as adults occur in deeper

weeks to months before

(Buck et al., 1975; Gosho,

1980) . Many fishes which

water on the continental

shelf and slope inhabit littoral and sublittoral areas
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8.2.2 Salmonids

Salmon and trout are commonly found in oceanic

waters and estuaries of NEGOA and in freshwater

watersheds draining into the gulf. All of these habi-

tats are exploited by salmonids at various times in

their lives. Their movements from one environment to

another are quite regular and are related to seasonal

changes in water temperature and food availability and

to their spawning migrations (see, for example,

Foerster, 1968). The principal species inhabiting the

coastal regions of NEGOA are: pink (Oncorhynchus

gorbuscha),  chum (Q. keta), sockeye (O. nerka), coho—
(g. kisutch), and chinook salmon (Q. tshawytscha)  ,

rainbow or steelhead trout (Salmo gairdneri), cutthroat

trout (g. clarki clarki), and Dolly Varden char

(Salvelinus malma) (ADF&G, 1975a).

In general, maturing salmon are found in distant

epipelagic waters hundreds of kilometers from the

Alaskan coast (Shepard et al., 1968; Godfrey et al.,

1975; French et al., 1976; Neave et al., 1976; Major et

al., 1978). Pink, sockeye, and chum salmon are widely

distributed in the Gulf of Alaska south to 41”N

latitude in winter and 48”N latitude in summer (Royce

et al., 1968) . Stocks originating in Asia, Alaska,

Canada, Washington, and Oregon are all found in this

broad region, and cohorts move across the continental

shelf of NEGOA when returning to their sites of origin

(Foerster, 1968; Royce et al., 1968; Stern et al.,

1976; NPFMC, 1978b). Many coho and chinook salmon

inhabit coastal areas during their entire oceanic

phase. Trout and Dolly Varden char are widely

Table 8.1 Life history data for five species of Pacific salmon in NEGOA (Burner, 1964; Bailey, 1969; Merrell, 1970;
Hartman, 1971; Hart, 1973; Stern et al., 1976).

Species

Characteristics

Freshwater habitat

Length of time young
stay in fresh water
after hatching

Length of ocean life

Year of life at
maturity (years)

Average length at
maturity (cm)

Average weight at
maturity (kg)

Range of weight at
maturity (kg)

Fecundity (number of
eggs)

Pink

Short streams

several days
to several weeks

1-1/3 years

2

50.8

1.8

0.9 to 4.1

2,000

Sockeye

Streams, rivers,
and lakes

1-4 years

* to 4 years

3 t07

63.5

2.7

0.7 to 4.5

3,700

Chum

Short and
long streams

Less than
1 month

+ to 5 years

2 t 0 6

63.5

4.1

1.7 to 20.4

3,000

Coho

Streams and
rivers

1 to 2 years

1 to 2 years

2 t 0 4

61

4.5

1.7 to 13.6

3,500

Chinook

Large rivers

3 to 12 months

1 to 5 years

3 t 0 8

91.4

10

1.1 to 56.8

4,800

distributed seasonally along the entire coastline of

NEGOA (Stern et al., 1976).

Following an oceanic phase of variable duration

(Table 8.1) in which salmon feed abundantly and reach
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Figure 8.5 Population estimates for average total Pacific salmon run (1000’s) in NEGOA districts, 1955-75 (ADF&G
data in Stern et al., 1976).

Prince William Sound district. Sockeye salmon occurred be stable in NEGOA (ADF&G, 1978). A more detailed

mainly in the Copper River district. Only 5 percent of account of the regional commercial catch is presented

the average annual spawning population (all species after a discussion of the life history of juvenile

combined) was thought to occur in the Yakutat area. salmon.

Sockeye and coho salmon were the predominant species on Anadromous

the coast from Cape Suckling to Cape Fairweather. The develop through

distribution and relative abundance of salmon appear to Alaskan streams

salmon spawn and die; unattended, eggs

the winter in the subsurface gravel of

and rivers. In spring fry emerge and

migrate to sea immediately, or after one or more years

of development in fresh water (Table 8.1). Salmon

smelts (young juveniles adapting to salt water) use

coastal estuaries as nurseries and feed voraciously on

an assortment of pelagic and benthic invertebrates

(LeBrasseur et al., 1969; Carlson, 1976; Harris and

Hartt, 1977; Gosho, 1977; Sibert et al., 1977; Healey,

1979, 1980 ; see Trophic relationships section for

details). Taylor (1980) showed that the survival of

pink salmon fry was greater when coastal waters were

warmer and food was more abundant. Presumably, larger

fish are better able to avoid predation, and water

temperatures have been positively correlated with food

production. These factors should affect survivorship

of other species of salmon in a similar manner.

Following a variable period of up to about a year,

spent in estuaries and coastal waters, juvenile salmon

migrate offshore (Foerster, 1968; Stern et al., 1976;

Major et al., 1978).

The principal migration route of juvenile salmon

heading to sea is along the periphery of IIEGOA then

southwest past Kodiak Island (Royce et al., 1968) (Fig.

8.6). Juvenile pink salmon move into oceanic waters

from streams and estuaries during July, August, and

September (Fig. 8.2). They do not scatter randomly but

migrate in a narrow band (about 30 km in width) along

the coast. Other salmon migrants travel a similar

route (Royce et al., 1968). The migration includes not

only locally spawned fish but also some spawned in

streams hundreds of kilometers to the southeast (Stern

et al., 1976). The coastal movement continues into

October and November; then young salmon proceed south

to distant feeding grounds (Royce et al., 1968) where

they grow, mature, and eventually migrate back to their

natal streams to spawn.
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$1.4 million, assuming that each fish weighed an

average of 4.3 kg and $2.42 per kg was the average

price paid (weights and prices the same as for the

Prince William Sound Area). The 54-year record of the

commercial catch of coho in NEGOA is shown in Fig. 8.7.

Chinook salmon are the largest and most valuable

salmon, but they are not taken in NEGOA in large

numbers. The total annual catch has rarely exceeded

30,000 since 1930 (Fig. 8.7). In 1979, 19,700 chinooks

with an ex-vessel value of $645,000 (R. Pirtle, in

litt.) were caught in the Prince William Sound Area.

About 95 percent of the catch is taken in the Copper

River District (ADF&G, 1979f) . Several thousand

chinook salmon are also caught annually by the troll

fishery in Yakutat Bay and the Alsek and Situk Rivers

(ADF&G, 1977).

A commercially important offshore troll fishery

occurs south of the proposed OCS Lease Area No. 55

tracts in “outside” waters beyond 19.3-km demarcation

line. ‘The Fairweather Ground (Area 157) is the most

productive area. There an average of 40,300 chinook

and 29,400 coho were caught annually from 1971 to 1976.

These catches represent 99 and 95 percent,

respectively, of the total offshore troll catch of

chinook and coho salmon in a region bounded by the

Dixon Entrance to the south and Cape Suckling to the

north (NPFMC, 1978b). Based on current prices (R.

Pirtle, in litt.), the chinook and coho catch is worth

about $1 million annually to the fisherman. The

fishing industry, however, claims that the NPFMC has

underestimated the extent of the landings taken from

the Fairweather Ground. According to the Halibut

Producers Cooperative, the catch has an ex-vessel value

of over $5 million (Stafne and Hemphill, 1977). The

exact value of the catch is difficult to determine

because many fish caught on the Fairweather Ground are

landed in several southeastern Alaskan ports and some

in British Columbia and Washington. There is general

agreement that the salmon caught in Area 157 have a

comparable value to those taken inshore throughout the

entire Yakutat Area (L. Jarvela, in litt.).

The offshore fishery for salmon on the Fairweather

Ground has been in operation since 1952. Because of

its high economic value and its lengthy tradition as a

prime fishing ground, any threat of disruption of the

fishery has been met with organized and strong

opposition. This response was evinced when the NPFMC

prepared its Fishery Management Plan that increased the

regulation of the salmon industry. Activities by the

oil and gas industry in Lease Area No. 55 may evoke a

similar response. The fishing season for chinook now

extends from April 15 to October 31; fishing is

permitted for coho from June 15 to September 20 in

“outside” waters (NPFMC, 1978b).

8.2.3 Non-salmonids

Pelagic species

Information on distribution and abundance of

non-salmonid pelagic fishes in NEGOA is for the most

part limited to data on species commercially sought, or

those prominent in the catches of U.S. and foreign

commercial fishing fleets. A synoptic review of the

literature on the distribution, abundance, life

histories, and fisheries of 34 common pelagic fishes

(15 families) is given by Macy et al. (1978). These

pelagic species generally live near the surface; they

often feed or migrate over long distances; some form

dense schools, making them easier to catch; and they

provide valuable forage for many commercially and

ecologically

NEGOA . For

pallasi) and

species of

important fishes, birds, and mammals in

example, Pacific herring (Clupea harengus

capelin (Mallotus villosus) are major prey

salmonids (Hart, 1973]. Cetaceans and

pinnipeds consume large numbers of Pacific herring,

capelin, eulachon (Thaleichthys pacificus),  and deepsea

widely in the

8.11). Major

Prince William

of fiords and

smelts (Bathylages  spp. ) (ADF&G, 1975a; Macy et al. ,

1978).

Pacific herring are distributed

coastal waters of NEGOA (Fig.

concentrations of herring occur in

Sound, especially in the outer areas

around Montague Island (Rounsefell,  1930; Reid, 1972;

ADF&G, 1975a; Macy et al., 1978). In aerial surveys,

additional large concentrations were observed in the

Copper River Delta, Upper Russell Fiord, and in Yakutat

Bay between Ocean Cape and Knight Island. Few herring

were seen east of Yakutat Bay (ADF&G, 1975a).

In the Prince William Sound-Copper River Delta

area herring spawn from early March to early June

(Reid, 1972) . In the Kodiak area spawning occurs
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primarily from May through mid-June (Rounsefell, 1930;

ADF&G, 1975a). Peak spawning times vary from year to

year, and populations do not always return to the same

area in successive years to spawn. Water temperatures

may be an important determinant of the timing and

location of spawning (ADF&G, 1975a).

Gravid females extrude their eggs onto algae,

submerged tree branches, and other stable substrates

along shallow, rocky shores (Reid, 1972). Attendant

males release milt at the same time. Spawning herring

can be so dense that they appear to generate milky

plumes when viewed from the air.

Most schools of mature herring leave the shallows

after spawning and swim into deeper, offshore water to

feed (Taylor, 1964). They return to shallower waters

in autumn to overwinter.

Larval and juvenile herring use bays in Prince

William Sound and other protected embayments as nursery

grounds, feeding extensively on calanoid copepods

(Cushing,  1975; Harris and Hartt, 1977). By late fall,

young herring move into deeper, offshore waters (Reid,

1972) . Whether herring follow migratory routes or

merely show general inshore-offshore movements has not

yet been ascertained (Macy et al., 1978).

The size of Pacific herring populations in NEGOA

has been difficult to ascertain , mainly because of wide

fluctuations in year-class numbers. Years in which

herring were abundant coincided with the passage of

dominant year-classes through the commercial fishery

(Rounsefell  and Dahlgren,  1932). These dominant

year-classes, though, occur at random intervals and are

not closely correlated with annual egg production or

fishing pressure (Reidj 1972). Years of high and low

catches of Pacific herring in NEGOA have been described

by Hanamura (1961) and ADF&G (1975a, 1979f).

A small herring fishery presently exists in NEGOA,

principally in Prince William Sound. Since 1964,

herring roe has been commercially harvested and sent to

Japan for human consumption (ADF&G, 1975a). Roe is

collected from gravid females or harvested once the

eggs are extruded onto algae. Eggs attached to kelp

have the highest value. A bait fishery for herring

also exists in the sound, but the catch is

insignificant. The catch of herring taken for roe has

ranged from 900 to 7,000 mt during the past decade.

Years of peak harvest were 1973-1975. In 1978 only

1,350 mt were taken. The roe constitutes about 10

percent of the total weight of the fish (ADF&G, 1979f).

The estimated ex-vessel value of the catch in 1978,

based on prices paid Kodiak fishermen, was $165,000.

Capelin are abundant in NEGOA waters (Hart, 1973).

They live in oceanic waters at mesopelagic depths for

most of the year, rising in the water column and

migrating shoreward to spawn (Trumble,  1973). They

spawn along exposed pebbly beaches (Hartj 1973) that

have rather narrowly defined habitat characteristics.

Water temperatures, substrate grain size, tidal stage,

and ambient light conditions all affect spawning

(Jangaard, 1974). The exact location of spawning

beaches in NEGOA has not yet been reported. Spawning

probably occurs in ITEGOA in May and June as it does in

Kodiak waters (J. Blackburn, ADF&G, Kodiak Office,

pers. Comm.). It occurs in September and October in

the Strait of Georgia, British Columbia (Hart, 1973),

and in June through July in the Bering Sea (Musienko,

1970). Spawning individuals are mainly 3 and 4 years

old. Most fish die after spawning. Demersal eggs

attach to beach substrates and hatch in 15-30 days at

5-10°C. (Jangaard, 1974).

Capelin are the main prey of many fishes (Harris

and Hartt, 1977; Rogers and Rogers, 1978; Rogers et

al., 1979) . Marine birds and pinnipeds also eat large

amounts of capelin (Calkins  and Pitcher, 1978; Pitcher

and Calkins, 1978); Sanger et al., 1978.)

Apart from recent OCSEAP surveys and anecdotal

data, little information is available on the seasonal

movements of capelin in NEGOA . Considering the

apparent importance of the species, more investigations

are necessary to further describe its seasonal

distribution, abundance, life history, and trophic

relationships.

Pacific sand lance (Ammodytes hexapterus) probably

occur throughout the continental shelf region from near

shore to the edge of the shelf. As adults, they are

more abundant near shore (Macy et al., 1978).

According to Trumble  (1973), sand lance spawn in winter

at depths of 25-100 m in areas of strong currents.

Eggs are buried in the sand. Larvae are epipelagic and

disperse farther offshore with age. Large

concentrations of larval sand lance were found over the

Portlock and Albatross Banks (Favorite et al., 1975).

Juvenile sand lance are benthopelagic, inhabiting sandy

substrates (Macy et al., 1978] but rising in the water

column to feed (Harris and Hartt, 1977). Juvenile sand

lance are found in shallower water than adults, and

both life stages move into deeper water in the fall and

winter (Andriyashev, in Harris and Hartt, 1977).

Pacific sand lance are an important prey of many other

fish (see Fish Trophies section). They are common in

both pelagic and

important in energy

Atka mackerel

widely distributed

Pacific Ocean and

benthic fish assemblages and are

transfer between systems.

(Pleurogrammus monopterygius)  are

in epipelagic waters of the North

Bering Sea. It is taken most

frequently along the continental shelf break. Adults

migrate annually to inshore spawning grounds. Optimal

spawning conditions occur in the straits between

islands, where swift currents prevail. Rocky
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Pacific halibut (Hippoglossus stenolepis)  have

been the primary target species since 1888 of a

commercial fishery in the North Pacific, and they have

been taken in the Kodiak Region since 1922 (IPHC,

1978). Although their stocks have been stressed by

fishing for decades, the fishery remains viable and is

of chief concern to the populace of several Alaskan

communities, notably Kodiak City (IPHC, 1977).

Halibut occur on or near the continental shelf

from California northward into the Bering Sea.

Preferred water depths vary with season and age.

During the NMFS survey, the species constituted about

one percent of the flatfish catch in NEGOA (Ronholt et

al., 1978) . Halibut are usually found in 30-275 m of

water, although the setline fishery has recovered fish

from 1,100 m (Fig. 8.16; Bell and St. Pierre, 1970;

IPHC, 1978).

The seasonal movements, migratory routes,

spawning, and early life history of Pacific halibut

have been studied in detail since 1923, when the IPHC

was organized (Thompson and Herrington, 1930; Thompson

and Van Cleve, 1936) . Tagging studies indicate that

adult halibut migrate annually from their shallow

feeding grounds, such as the Portlock Bank, to deeper

winter spawning grounds, then return to their summer

grounds. Some adults migrate long distances and do not

return to the same grounds (Bell and St. Pierre, 1970;

Skud, 1977; IPHC, 1978). Mechanisms that trigger these

pioneer immigrations are unknown. Most tagged fish

were recovered within 150 km of their initial release

site (Table 8.8).

Halibut spawn from November to March at 180-450 m

depths along the edge of the continental slope. Major

spawning sites in Alaska are Yakutat, Cape

Suckling-Yakataga (“W” grounds), and Portlock Bank,

Cape Spencer, Cape St. Elias, Chirikof,

Islands “outside” grounds are other

and the Trinity

known spawning

areas (Skud, 1977; IPHC, 1978; E. Best, IPHC, pers.

Comm.). Eggs have been collected throughout the entire

region, and spawning probably occurs at suitable depths

all along the slope.

Halibut eggs have been recovered from 40-935 m of

water, with highest densities at depths of 100-200 m

near the edge of the continental slope, between Yakutat

and Portlock Bank (Thompson and Van Cleve, 1936) .

Currents in the Gulf of Alaska carry the eggs and

larvae northward and westward for six to seven months.

At first the larvae passively drift in water deeper

than 200 m, but

surface (Thompson

later they rise slowly toward the

and Van Cleve, 1936; Skud, 1977;

IPHC , 1978) . Favorite and Ingraham  (1977) have

concluded that eggs released along the southeastern

coast of Alaska would be transported to NEGOA and

advected shoreward at speeds of 5-10 cm/s, equivalent

to 4-8 km/day, or 700-1400 km over a six-month larval

period.

Juvenile halibut settle out of the plankton in May

and June; they are found in shallow bays along the

coast of Alaska and the Aleutian Islands where water

depths are less than 100 m (Thompson and Van Cleve,

1936) . Halibut one to three years old are more likely

to be found farther inshore than are prerecruits four

to eight years old according to IPHC (Best,

NMFS (Ronholt et al., 1978) trawl survey

stations throughout the Gulf of Alaska.

Table 8.8 Release and recovery locations of tagged adult Pacific halibut, 1925-76 (Skud, 1977).

1974) and

data from

Important

Recoveries by region

Number Bering SE
Release region released Sea Shumagin Chirikof Kodiak Yakutat Alaska B.C. Total

Bering Sea 20,435 756 21 69 125 116 83 53 1,223

Shumagin 5,992 0 202 104 35 20 24 11 396

Chirikof 9,193 0 37 473 91 20 17 10 648

Kodiak 16,501 0 17 119 1,294 40 36 25 1,531

Yakutat 11,431 0 31 122 428 1,078 62 52 1,773

SE Alaska 9,729 0 0 0 1 4 1,945 85 2,035

British Columbia
and South 59,642 0 1 0 7 39 194 17,288 17,529

TOTAL 132,642 756 309 887 1,981 1,317 2,361 17,524 25,135
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halibut nursery grounds near the OCS lease areas are in

Yakutat Bay and the Fairweather Grounds, but these

areas are by no means inclusive (Best, 1974). A

reexamination of the IPHC data base indicates that

movements of juvenile halibut may be extensive (Skud}

1977).

Skud (1977) hypothesizes that the emigration

movements o f

drift of eggs

during IPHC

demonstrated

juvenile halibut counteract the westward

and larvae., From age and size data taken

trawl surveys (IPHC, 1966) it has been

that the mean age of juvenile halibut

increases from west to east. Three-year-olds were

dominant at Unimak and Chirikof, four-year-olds  at

Chiniak, five-year-olds  at Cape St. Elias, and five-

and six-year-olds in British Columbia (Best, 1968,

1974) . In addition, 30 percent of the juvenile halibut

tagged west of Cape Spencer (IPHC’S Area 3) were

recovered in British Columbia. This evidence suggests

that, contrary to earlier findings (Thompson and

Herrington, 1930), there is extensive intermingling of

halibut stocks north and south of Cape Spencer (Skud,

1977). Furthermore, it is principally the juvenile

fish, not the adults, that maintain the population

distributions.

The abundance of Pacific halibut has been

estimated from catch and age data using a cohort

analysis technique. The abundance of adults has

declined sharply in IPHC’S Regulatory Areas 2 and 3,

from about 10 million fish per area in the 1950’s to 5

million fish per area in the 1970’s. One index of

abundance, catch per unit effort (CPUE), is shown for

halibut (1960-77) in Fig. 8.17. The IPHC uses the

abundance of three-year-old halibut as an indicator of

juvenile stocks. After increasing during the 1930’s,

abundance peaked in the 1940’s at more than 10 million

fish in both Areas 2 and 3. Stocks declined to about 5
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o
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Figure 8.17 Catch statistics of Pacific halibut based
on U.S. and Canadian setline fishing in IPHC Regulatory
Areas 2 and 3, 1960-77 (IPHC, 1977, 1978).

million fish in the late 1940’s. Occasional strong

year-classes appeared in the 1950’s and 1960’s, but

stocks generally declined in the Gulf of Alaska through

1976 (IPHC, 1977), with a slight increase in 1977

(Skud, 1978). The most recent reports still estimate

juvenile stocks in the gulf at less than three million

fish (IPHC, 1977).

Arrowtooth flounder (turbot) (Atheresthes stomias)

is another commercially important flatfish. It was the

most abundant flatfish caught in the Gulf of Alaska

during the 1973-76 NMFS survey. This species is widely

distributed throughout the region (Fig. 8.18).

Arrowtooth flounder constituted 52 and 44 percent of

the flatfish catch in the Kenai and Prince William

Statistical Areas, respectively; and 42 and 44 percent

in the Yakutat and Fairweather Areas (Ronholt et al.,

1978). Highest concentrations of turbot were found

between 201 and 400 m water depths (Hughes, 1974;

Ronholt et al., 1978), but they also occur at even

greater depths (Hart, 1973). Larvae have been recorded

from the surface down to 200 m (Hart, 1973). Juveniles

probably occur in shallower water than adults, as they

do in the Bering Sea (Shuntov, 1970). Large numbers of

arrowtooth flounder were taken in a small area between

Yakutat and Icy Bays during the 1975-76 survey (Ronholt

et al., 1978). These flounders probably inhabit deeper

waters in winter than summer (Shuntov, 1970). Other

than some data from the commercial fishery, which will

be discussed later, little is known about the life

history of this species in NEGOA waters. In the Bering

Sea, it spawns from December to February (Shuntov,

1970) , but its spawning grounds have not been

determined (Pereyra et al., 1976).

Other flatfishes (flathead sole, rex sole, rock

sole, and Dover sole) were caught regularly in 1975-76.

Details of their distribution and relative abundance
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Pacific cod (Gadus macrocephalus)  is another

abundant roundfish in NEGOA waters. It is distributed

from inshore embayments (Harris and Hartt, 1977; Rogers

et al., 1979) to the continental slope (Hart, 1973).

Around the Kodiak archipelago it is usually taken in

waters less than 100 m deep, but in NEGOA it is found

somewhat deeper (Ronholt et al., 1978). During the

NMPS 1975-76 survey, in NEGOA the estimated biomass of

Pacific cod was 26,100 mt or about 16 percent of the

roundfish biomass for this region. During May-October

lYbl, an estimated 121,10(J mt ot cod inhabited the

region, 77 percent of which inhabited the Kenai/outer

continental shelf zone (Ronholt  et al., 1978).

Little information on the life history and

seasonal movements of Pacific cod in NEGOA waters is

available. They are believed Jo migrate to deeper

waters in autumn, spawn in winter, and return to

shallower areas in spring (Hart, 1973) . Along the

British Columbia coast, cod move to offshore banks

(90-145 m) in winter and return to 30-75 m water depths

in spring and summer (Ketchen, 1961) but remain within

the 6-9°C isotherms. (Ketchen also provides growth and

mortality data for Pacific cod in Canadian waters.)

Sablefish (blackcod)  (Anoplopoma fimbria) i s

another commercially important roundfish. It is common

along the continental slope from the Queen Charlotte

Islands to the Shumagin  Islands, where about 67 percent

of the North Pacific stocks occur (Low “et al., 1976).

Its distribution in the Gulf of Alaska is shown in Fig.

8.20. The species was caught only occasionally by NMFS

crews in 1973-76 (Ronholt et al., 1978), but they were

sampling in areas shallower than the preferred habitat

of the species. Sablefish constituted 68 to 100

percent of the roundfish catch in the northeast Pacific

at depths greater than 200 m in an earlier survey

(Alverson et al., 1964). At those depths it ranked

second to flounders in relative abundance among

demersal  fishes (Low et al., 1976).

It is evident from tagging studies that

large-scale migrations of sablefish occur. Bering Sea

stocks apparently intermingle with those as far south

as California (Low et al., 1976).

Sablefish mature at five to seven years of age.

They spawn during winter at depths of 250-750 m

(Thompson, 1941). There is no evidence of a spawning

migration; sablefish in spawning condition are found
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foreign fish quotas, time-area closures, minimum size long-term effect of this action will be to restrict

limits, and gear restrictions have been, or are being, foreign fisheries and to increase domestic efforts and

formulated for the demersal fishes of the Gulf of catches within the U.S. Fisheries Management Zone (J.

Alaska. Foreign nations are permitted to fish in the H. Branson, NPFMC, pers. comm.). The implications of

Conservation Zone under bilateral treaty agreements this change in fisheries resource utilization are still

with the U.S. However, the domestic fisheries are unclear, but domestic fisheries and foreign policy may

given primary consideration in these agreements. The be appreciably altered.

8.3 TROPHIC RELATIONSHIPS

Knowledge of predator-prey relationships is

important in assessing the effects of OCS development

on faunal populations. Data on seasonal variations in

distribution and abundance of organisms alone are

insufficient. Predator-prey relationships can be

ascertained and food web models constructed by

analyzing the gut contents of organisms and, when

possible, by watching them eat. Marine food web models

show major dependencies among infauna, epifauna j

pelagic fishes and invertebrates, birds, and mammals.

They increase our understanding of energy flow through

the ecosystem and help elucidate community structure

and function. They may thus be used to predict the

transfer and accumulation of industrial contaminants in

a community of marine animals.

Fishes of NEGOA thrive on a rich assortment of

zooplankton, larger benthic and pelagic organisms, and

other fishes. The trophic relationships are complex

and vary with life stage, season, habitat, prey

availability, and physiological condition of the

predator and prey. Generalizations are difficult, and

predicting the fate and effect of pollutants in marine

food webs is fraught with uncertainties. Nonetheless,

some typical feeding relationships and common energy

pathways may be mentioned.

In coastal waters of NEGOA the production and re-

lease of larvae of many fishes tend to coincide with

local zooplankton blooms (LeBrasseur et al., 1969;

Carlsonj 1980) . Spring runoff from coastal rivers

transports detritus and nutrients into nearshore

waters. At this time day length and water tempera-

tures are increasing rapidly, and primary production

may also be increasing as it does in more temperate

waters (e.g., Pratt, 1965) . Zooplankton populations,
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Yellowfin s o l e Rock sole Sand sole

n=59 n=l 1 4 n=16

~. — WEIGHT PERCENT

Starry flounder

n=l O

I

PREY:

SL Sand lance c Calanoid  copepods

F Other fish and fish eggs s Sipunculid worms

P E  Pelecypods I Isopods

P O  Polychaete  w o r m s M Mysids

G Gammarid amphipods OTHER Species of less than (3Yo

nearshore waters of Kodiak has also been reported

(Rogers et al. , 1979). An overview of prey consumed by

fishes common to NEGOA is shown in Table 8.12.

Pacific halibut, although not studied in detail in

the aforementioned fish food surveys, is of major

commercial importance to the Gulf of Alaska groundfish

fishery. Adult Pacific halibut consume mostly fishes

(other flatfishes, walleye pollock, Pacific cod ,

rockfishes,  and Pacific sand lance), squid, octopi, and

king and Tanner crabs (Simenstad et al., 1977; Smith et

al., 1978; IPHC, 1978). Juvenile halibut are also

piscivorous but take a greater proportion of

crustaceans. Cook Inlet populations fed mainly on

shrimp (IPHC data in Smith et al., 1978).

Figure 8.25 Dominant prey of four species of flat-
fishes in the Gulf of Alaska (Harris and Hartt, 1977).
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8 . 4 EFFECTS OF OCS DEVELOPMENT ON FISH POPULATIONS

Knowledge of marine communities can be used to

predict which species are most likely to be harmed by

OCS development in NEGOA. By knowing the source,

composition, and amount of contaminants together with

the physical oceanography of the area, trajectory

models can be constructed (see Chapter 3) and

predictions can be made regarding which organisms will

come into contact with the pollutant. Once a heavy

metal! petroleum derivative, or synthetic chemical has

been taken up by a species, further predictions

concerning the fate of the pollutant through the marine

food chain can be made. For instance, a lightweight

hydrocarbon spilled from an oil tanker, pipeline, or

well head would probably remain in surface water and be

advected shoreward (see Chapter 3). Epipelagic fishes,

many of which swim in dense schools (e.g., Pacific sand

lance, Atka mackerel) could be directly fouled by the

oil-laden water. Struhsaker (1977) showed that

exposing Pacific herring to one fraction of petroleum

(benzene) induced premature spawning, impaired ovarian

and larval development, and reduced survivorship of

adult fish. Groundfish such as Pacific halibut, rock

sole, and Pacific cod prey on a variety of clupeids,

including Pacific herring (IPHC, 1978; Rogers et al.,

1979, Table 8.12). Pollutants ingested or adhering to

herring could accumulate in these fishes and eventually

be incorporated into benthic food chains. Even if

epipelagic fishes do not come into immediate contact

with the discharged pollutants, their principal prey

(copepods, mysids, euphausiids, crustacean and fish

larvae) may. Prey populations may die, or they may

accumulate and concentrate pollutants that will

eventually be incorporated into epipelagic food chains.

Recent studies have shown that nearshore,

estuarine waters are used as spawning grounds for such

commercially important species as salmonids, herririg

(Buck et al., 1975), and king crab (Feder et al., 1979;

G. Powell, pers. Comm.). They are also important

nursery areas for most larval and juvenile fishes

(Harris and Hartt, 1977; Rogers et al., 1979).

Chronic, low-level exposure of young fish to pollutants

could affect their physiology and behavior, impeding

growth and decreasing survivorship (Patten, 1977).

Furthermore, heavier-grade oils may sink, become

incorporated into the littoral sediments, be consumed

by deposit-feeding invertebrates (such as polychaetes),

and enter the benthic food chains (Feder and Jewett,

1977; Feder et al., 1979). Since few in situ studies——
on the fate and effects of industrial pollutants in

Alaskan marine ecosystems have been made, much of this

discussion awaits verification.
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CHAPTER 9 BIRDS

J. G. Strauch, Jr., SAI

9.1 INTRODUCTION

Marine ecosystems support distinctive communities

of birds, whose composition, distribution, breeding

season, and movements are determined mainly by the

spatial and temporal distribution of the food supply.

Generally, higher concentrations of birds are found in

neritic waters (those over the continental shelf) than

in oceanic waters (those seaward of the shelf). Pri-

mary productivity and zooplankton concentrations are

usually higher in neritic waters because of the influx

of nutrients from land drainage, vertical mixing over

the shelf, and local upwellings  close to shore. Oceanic

birds generally feed on the surface or a short distance

below it. Crustaceans, squid, and, in tropical areas,

flying fish are their major prey. Many birds in ne-

ritic waters and in regions of upwellings, however,

feed on fish which they catch by diving. Many birds

are attracted to convergent fronts or rips (boundaries

between unlike water masses) where prey are concen-

trated for feeding. In areas where upwellings bring

nutrient-rich waters to the surface, successive blooms

of phytoplankton, herbivorous zooplankton, and car-

nivorous zooplankton occur. Since currents continu-

ously carry water away from the center of upwelling,

however, these members of the food chain are displaced

away from the upwelling. Birds which specialize on

zooplankton and micronekton thus find food most abun-

dant at some distance from the center of upwelling.

Small fish which eat mainly phytoplankton are also

found near upwelling areas, and birds which prey on

these fish often are found nearby.

Upwellings are not regularly found in NEGOA

waters, but frequent mixing in the water column over

the banks brings nutrients to the surface. Seasonal

changes in plankton growth have not yet been well

documented. Over the shelf a spring increase in zoo-

plankton is thought to occur. In deep waters away from

the shelf the zooplankton breed independently of the

increase in phytoplankton  biomass and, by grazing,

prevent a preliminary phytoplankton bloom. Euphausiids

swarm to the surface while spawning and thus provide a

food source independent of upwelling.

The distribution of suitable breeding areas and

the seasonal variation in the food supply are probably

the major selective forces on the breeding biology of

marine birds. The distribution of islands and other

safe nesting places may either restrict birds to only a

small fraction of the total available feeding area or

require them to spend much time flying to and from more

distant feeding grounds. The timing of egglaying is

closely governed by seasonal availability in the food

Supply .

General information on the breeding phenologies of

Alaskan marine and coastal birds has long been avail-

able (Gabrielson and Lincoln, 1959). As one proceeds

northward from the equator, the length of the breeding

season of birds becomes shorter. The reproductive

period of more northern populations of a species is

usually compressed and may be several weeks shorter

than that of more southern populations. Superimposed on

this geographic trend are local year-to-year fluctu-

ations in weather and in food supply. An unseasonably

late spring may delay the start of breeding, while a

poor food supply may lead to increased mortality of

young or may even prevent breeding altogether. Natural

populations can compensate for these year-to-year

uncertainties. In late seasons the breeding effort at a

colony is usually more highly synchronized and com-

pressed into a shorter period; when conditions are

favorable, individual pairs and the population as a

whole produce greater numbers of more vigorous young,

thus offsetting poor years.

True marine species tend to have low fecundity but

high survivorship (Ashmole, 1971); a pair may thus

enjoy many breeding seasons, and the success or failure

of a particular season is not so critical for individ-

ual fitness or maintenance of a population as it is for

shorter-lived species. On the other hand, such popu-

lations increase very slowly, and recovery of the

breeding population from significant mortality may take

many generations.

Although birds are believed to be important mem-

bers of marine ecosystems, quantification of their role

in such systems has hardly begun. In terms of numbers

and the amount of food they consume, they must play an

important role~ at least locally. Wiens and Scott

(1975) estimated that four species feeding in the

neritic zone along the Oregon coast consumed 22 percent

of the annual production of pelagic fish. Marine birds

may contribute to the stability of the ecosystem by

foraging on prey species that are temporarily abundant

(Wiens et al., 1978b). The approximately 420,000 birds

breeding at Cape Thompson consumed an estimated 13,100

metric tons of food during a four-month breeding period

(swartz, 1966). Accordingly, the 260,000 breeding

birds in NEGOA must consume about 8,000 metric tons of

food during the breeding season.
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Leeward Chain of the Hawaiian Islands (Palmer, 1962).

Both species are common in Alaskan waters, the Black-

footed being more frequent in the Gulf of Alaska, while

Laysan are probably more numerous in the Bering Sea and

near the Aleutian Islands.

Albatrosses are among the largest seabirds. They

have exceptional powers of gliding flight. The Laysan

Albatross feeds mainly on squid, while the Black-footed

is a feeding generalist, taking dead or living fishes,

squid, crustaceans, and other animals (Ainley and

Sanger, 1979).

Nine species of the Procellariidae (petrels and

shearwaters) have been recorded from Alaskan waters.

Five are rare or casual in the Alaskan region; a sixth,

the Scaled Petrel (Pterodroma inexpectata), is uncommon

in Alaskan waters (Gabrielson and Lincoln, 1959; Kessel

and Gibson, 1979). The Sooty (Puffinus griseus) and

the Short-tailed (~. tenuirostris)  Shearwaters are the

most abundant summer pelagic birds in Alaskan waters.

Both species breed in the Southern Hemisphere and spend

the austral winter on waters in the Northern Hemi-

sphere. The Northern Fulmar (Fulmarus glacialis)  is

the only Alaskan breeding species.

Typical petrels are of medium to large size. Most

species nest in burrows. They have a rapid and gliding

flight, usually close to the surface of the water.

Many species feed on the surface, but the Sooty and

Short-tailed Shearwaters are wing-propelled divers

(Storer, 1971), feeding by what Asbmole (1971) calls

pursuit plunging (Fig. 9.2). Fulmars are scavengers

(Ainley and Sanger, 1979); the more specialized diets

of the Alaskan shearwaters are discussed later.

Two species of the Hydrobatidae (storm-petrels),

the Fork-tailed (Oceanodroma furcata)  and the Leach’s

(~. leucorhoa) Storm-Petrels, occur in Alaska as breed-

ing species. They breed in crevices and burrows,

usually in colonies. They spend the winter on the open

ocean; the wintering grounds of the Alaskan species are

not fully known. When feeding, they flutter character-

istically over the water, often striking the surface

with their feet; the feeding method is known as pat-

tering (Fig. 9.2). They eat a variety of prey and are

the smallest members of the generalist groups of tube-

noses (Ainley and Sanger, 1979).

A e r i a l  piracy
Jeegers

F< S u r f a c e  plunging
Dipping T e r n s
G u i l e  &  Terns p a t t e r i n g

S u r f a c e  s e i z i n g
Phalaropes ,,Lw  ‘g-petre’ey

r

>. . . “
. . . —

s
‘:::::’’V’”’’”’Z’Z  / -

Pursuit plunging
S h e a r w a t e r s

m“”” Pursuit divirtg:feet

+

C o r m o r a n t
Bottom feeding
Diving Ducks

Figure 9.2 Seabird feeding methods (modified from
Ashmole, 1971).

The only family in the Pelecaniformes which is

found in Alaska is the Phalacrocoracidae (cormorants).

It is represented by four species: the Double-crested

(Phalacrocorax auritus), Brandt’s (~. penicillatus),

Pelagic (~. pelagicus), and Red-faced (~. urile) Cor-

morants. The Brandt’s Cormorant is rare and very local

in Alaska, known only from a few sight records and a

small colony in Prince William Sound (Kessel and Gib-

son, 1979); the other three species are common along

the coast. The Double-crested Cormorant breeds

throughout most of North America in freshwater and

marine habitats. The Pelagic and Red-faced are common

coastal species throughout most of the North Pacific.

Most species are colonial, breeding on ledges or rocky

islands along marine coasts (Thomson, 1964). Although

the young have functional nostrils, those of adults are

almost completely closed, and the birds must breathe

through their mouth. Their plumage is easily wetted,

in contrast to that of most other marine birds. Cor-

morants enter the water only to feed. They feed by

pursuit diving (Fig. 9.2), using their feet for propul-

sion. They eat mainly fish.

The Charadriiformes are a diverse group of birds

represented in Alaska by the Scolopacidae (sandpipers

and their allies), Phalaropodidae  (phalaropes),  Cha-

radriidae (plovers), the Haematopodidae (oystercatch-

ers) , the Stercorariidae (skuas and jaegers), the

Laridae (gulls and terns), and the Alcidae (auks). The

phylogenetic relationships among these birds have

recently been analyzed by Strauch (1978). Some or all

members of these families spend most of their lives on

marine waters. For the present discussion, all members

of the Scolopacidae, Phalaropodidae, Charadriidae, and

Haematopodidae, which in North America are commonly

called shorebirds, can be placed in the second category

mentioned above: those birds that breed near fresh

water but otherwise feed on salt water. The last three

families will be discussed here even though not all of

their members are true seabirds.

Four species of Stercorariidae are known from

Alaska. The South Polar Skua, Catharacta maccormicki,

is a very rare visitor to the North Pacific (Kessel  and

Gibson, 1979). The Pomarine (Stercorarius pomarinus),

Parasitic (~. parasiticus), and Long-tailed (~. longi-

caudus) Jaegers are common breeding birds on the arctic

tundra. Their ecology in northern Alaska has recently

been described (Maher, 1974). Skuas and jaegers are

similar to gulls but have raptor-like  habits and hooked

bills. During the winter they are independent of land;
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The second category of Alaskan marine birds, those

that occupy freshwater habitats during the breeding

season but feed in marine waters at other times, can be

subdivided into four groups:

1. Those that spend all or most of the

nonbreeding season on coastal waters.

These include members of the Gaviidae

(loons), the Podicipedidae (grebes),

the Anseridae (waterfowl), and the

Phalaropodidae (phalaropes).

2. Those that feed mainly by wading.

These include members of the Ardeidae

(herons) and the Gruidae (cranes).

Herons and cranes are rare in NEGOA

and will not be considered further.

This group also includes the Scolo-

pacidae (sandpipers and allies), the

Charadriidae (plovers), and the

Haematopodidae (oystercatchers).

3. The Belted Kingfisher (Megaceryle

alcyon), a member of the Alcedinidae.

This fish-eating species is common

throughout much of Alaska including

marine coasts, where it feeds on fish

and possibly intertidal invertebrates.

It is only peripherally a member of

the marine ecosystem and will not be

considered further.

Four species of loons and two species of grebes

are found regularly in the Gulf of Alaska. They nest

on inland waters and winter in ice-free regions, mainly

on marine coasts. An unknown fraction of Alaskan

populations leaves the state for the winter. Loons and

grebes are highly adapted for an aquatic existence and

are almost helpless on land. They seldom fly except in

migration; they dive when disturbed by predators or

man. They are fish-eating, foot-propelled diving

birds.

Three species of swans, seven species of geese,

fifteen species of dabbling ducks, seven species of

diving ducks, twelve species of sea ducks, one species

of stiff-tailed duck, and four species of mergansers

are known from Alaska. Almost all the waterfowl spe-

cies make use of coastal environments, especially

during migration and in winter. Swans, geese (with the

exception of the Brant, Branta bernicla, and the Emper-

or Goose, Philacte canagica), and dabbling and stiff-

tailed ducks make extensive use of coastal wetlands,

estuaries, and bays. These often roost on open water

but seldom feed there. On the other hand, the Brant,

the Emperor Goose, diving/sea ducks, and mergansers

rely extensively on marine waters during the winter.

The distribution of Brant during the nonbreeding season

is highly correlated with the distribution of eelgrass

(Zostera marina), its major food at that season (Bell-

rose, 1976). The majority of the Alaskan breeding

population of Brant winters south of the state (Palmer,

1976).

Three species of diving ducks, and four species of

sea ducks are common or abundant wintering species on

NEGOA waters. Diving ducks eat a considerable amount

of plant material inland during the breeding season,

but all of the ducks mentioned here rely on animal food

during the winter. Diving and sea ducks feed on the

bottom (Fig. 9.2), where they eat a variety of inver-

tebrates. They undergo an annual simultaneous molt of

the wing feathers that leaves them flightless for three

to five weeks (Weller, 1976). Details of the diet of

NEGOA ducks are discussed later.

Large numbers of breeding or staging shorebirds

are found in NIZGOA, which lies in a major

migratory pathway (see Gill et al., 1979).

important species are the Western Sandpiper

mauri) and the Dunlin (C. alpina), millions—

shorebird

The most

(Calidris

of which

use mud flats in the area during migration. They probe

in soft substrates for invertebrates. The importance

of the Copper River Delta to migrant shorebirds is dis-

cussed in detail later. Other important species are

the Black Oystercatcher (Haematopus bacbmani), which is

a common permanent resident of rocky coasts on the Gulf

of Alaska, the Rock Sandpiper (Calidris ptilocnemis),

which commonly winters on NEGOA’S rocky shores, and the

Northern (Phalaropus lobatus) and Red (~. fulicarius)

Phalaropes, which are found during migration in large

flocks in NEGOA waters. Oystercatchers feed in rocky

habitats on molluscs, primarily mussels (Mytilus) and

limpets (Acmaea), which they stab or jab off rocks

(Hartwick, 1976). Rock Sandpipers frequently feed on

wave-washed rocks. Their diet is poorly known but

probably consists of small gastropod and crustaceans.

The two common Alaskan phalaropes spend most of their

migration and winter on open water. Red Phalaropes

tend to stay further offshore than do Northern Phala-

ropes. They feed by surface seizing (Fig. 9.2) of

small invertebrates.

The third category of birds which use Alaskan

marine habitats, the terrestrial birds which forage on

the coast, includes raptors and songbirds.

The most important raptors along the NEGOA coast

are the Bald Eagle, Haliaeetus  leucocephalus, and the

Peregrine Falcon, Falco peregrinus. These species are

of special concern because their populations in other

areas of North America are endangered. The coastal

population along the Gulf of Alaska, however, appears

not to have suffered the losses observed elsewhere

(Hamerstrom et al., 1975; Cade, 1975). Along the Gulf

Birds 193



n±iqe III.brniom&iJIiWnii'I 10 1I&frL1

aisthnuri i9rIg±rI chum n± brno1 sisw ai9iBwxs9r12 (cwt-tqA)
etsw acrie1 lo aisdiuuri 9gIJ.29iDsq8tsthons n&li
2qotsJ6c1q crxsr1con bussss 9ffl02 uk IliqA ui bnuoI
-usb rIgiH.ysM ciitnsbrnjds smw (ausdof 2uqoisfsfIq)

smoe moil bsiioqsiiw 211ug loeskika
sgsivA.mio1isIqnivommoilon1ud2fflio1sIq

Jso 29iflansb bid iLliw assissc1i aissqqsifloqa
siLluoi1guoirLt AOOI cii bnuol sd nsm!\abiid Ofassl
abiDis bnsaIIugasaonsduzt (isM-ds) isiniw cii.iss
-nsb sgsisvA.bsbioDsi esisqa nommoiaom sth sisw

irol\abiid Vbusnsswsd sisw hsansit isq asi.lka
lisria siLl issu io guols bsbiosi sisw aeiiiansb JasñgiH
cii bussfl isJIoiurioD ciibnsIaI noisibbiM issn1ssidj J.JJTJG COAE9G Ta aJJJA uq GWbOLJJ2. 

uq pA woucp 2GAGLJ prLq Loffba T' JJG 
EG apotu 9ccoLqIJ ço 92OU ]OL JJ p]Lqa ru a 

JpG LG1TJI O UGL9J eJITt 0t YJIC aITLAGA2 

T3p). 
aou WALGa uq errswir TGU2 G 

9uq pçoujc eiIu ofTq) 

uq apTbpoLq n cni o yjajc (rGuaTuJ 

IJJG TU J4ECOV T -Tjpr tLOJJJ OLJJA 

IUt0LW9T0U OZJ JJ O W9LTUG PTq OU 

bns211i1D no2991i fiXi29fl9['E1 bIfl s,la&[A lo
jIIoDnxJ bnno2lsiidsD)bnuotg 9thno(11snoia&)Do

J89 as16a bIfl.(.ôQIJ92n9H bnl9yoiT ;I
.nohiisbns jf2iIabid gni±uIDniboo1 lois±iv
af lug thiw n±oL yeth nos gninw6qa nomf&a 9th gn±iuG

9thflOgnibsslfluaisd bnE(xtouvioD)2n9vS51

nloDnuJ bns noal9±id) nomla iuo-bsnwsqa lo anssmsi
bnsclgirf nosnllsuau enol&I 3nitI.(eI
stiiIW) atriid no ylnism b991 ysfiT.a9gbsl sldxa29DDsni
ysth rbidw(vrt9gnbn5lniACVQI..Iszls

gnsb99l b3viscfo n9sd 9V811 y9rfT.gn±w 9th no 9flhiqD
noalisD bn±obbstD)sisIel9Lt9q-mIoiano

(OVI
asrIDsscE no b991 abiid nrisaaq lo a9sr9qa lFi9V9
ssth lo anouDiqanoD iaoM.snolsbifl3zrnu5r1zlii bns

(airn±tu&.D) wot3 ffX329WthL0W 9th bn& nsvI SIIi 9Th
.no±tbna9.tsId9zhsVninobssIrbhfwloittod
.asinoloz bIud9a tgnuoy bnaggno yeiq oafs 2fl9V65J
ewortsq2gnoa bns(sti9fon±qaaurLtnA)atiquIStsW

is.iniilllinsupsñ 9gsIo1 oals (siboism s±qao1sM)
.assis I RAM-39 22ITI8L1aRIa

m1\biid oa-r.o
Sm)l\eblid oer-r.oa

m\abiid e.eee-r.or H

06S1OotJloltilOzwowlOW 1OWL09tlOLbl

.8S106elOOt’1.ltil0Zt4 ..W1OP$’1oWL09@lOLbl

SCRlI13 VOWN ha !RYWfl LVtLIWH aNV NOIUMI?LCSI(I C-6



JO 0 10 50 30 40 00OIO

42 0 50 40 90 90 100901

N 500

H 5.1000 p!Lq8\vw5
H 120 i-ease pLq?\(w5

201-120 piLq2\lw
020 p!Lq\k

BIUD DEI12LLIE VbE-'1flI4

N

I

jl’

;0

i9

147° 146° 145° 144° 143° 142° 141° 140° 139° 138°
~

5C

i9

I ~ J ):” . , _  “1,,,. .,,

147° 146° 145° 144” 143° 142° 141” 140° 139”
-1

Figure 9.4 Spring pelagic distribution of birds (see text for data sources).

de:sities per transect were between 16 and 355 birds/ through December the average densities per transect
9

km. Highest densities were reported along or near the were between 8 and 32 birds/km-. Highest densities

shelf break, in the area west and southwest of Kayak were recorded along or near the shelf break.

Island, and in the area from Hinchinbrook  Entrance The paucity of winter data remains a serious

south to the region southwest of Middleton Island. deficiency in our knowledge of the distribution and

From July through September tubenoses, gulls, and abundance of Gulf of Alaska birds; surveys by BLM/USFWS

alcids were the most common species. From October in the winter of 1979”-80 have not yet been analyzed.
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Table 9.1 Relative density of marine birds in NEGOA
from shipboard and aerial transects in 1975-77 (Lensink
and Bartonek, 1976, Gould, 1977; Wiens et al., 1978b).

Species

Arctic Loon
Common Loon
Yellow-billed Loon
Unidentified loon
Black-footed Albatross
Laysan Albatross
Northern Fulmar
Sooty Shearwaters
Short-tailed Shearwater
Unidentified shearwater
Scaled Petrel
Fork-tailed Storm-Petrel
Leach’s Storm-Petrel
Unidentified storm-petrel
Double-crested Cormorant
Pelagic Cormorant
Red-faced Cormorant
Unidentified cormorant
Black Brant
Unidentified goose
Mallard
American WigeOn
Pintail
Greater Scaup
Oldsquaw
Black Scoter
White-winged Scoter
Surf Scoter
Red-breasted Merganser
Unidentified duck
Unidentified shorebird
Red Phalarope
Northern Phalarope
Unidentified phalarope
Pomarine Jaeger
Parasitic Jaeger
Long-tailed Jaeger
Skua
Unidentified jaeger
Glaucous Gull
Glaucous-winged Gull
Herring Gull
Thayer’s Gull
Mew Gull
Black-legged Kittiwake
Sabine’s  Gull
Unidentified gull
Arctic Tern
Aleutian Tern
Unidentified tern
Common Murre
Unidentified murre
Pigeon Guillemot
Marbled Murrelet
Kittlitz’s Murrelet
Ancient Murrelet
Parakeet Auklet
Cassin’s Auklet
Rhinoceros Auklet
Horned Puffin
Tufted Puffin
Unidentified alcid
Unidentified bird
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An aerial survey of the NEGOA shoreline was made

on 1-9 May 1976, and a partial survey ( covering only

exposed beaches) on 24 July 1976 (Arneson, ADF&G, pers.

Comm. ; Table 9.3). In May the highest densities of

birds (mainly shorebirds and gulls) were found between

Cordova and Cape Suckling (Fig. 9.7a). In July the

highest densities of birds in Icy Bay (mainly sea

ducks) and in the area between Cape Suckling Bay and

Icy Bay (mainly gulls) (Fig. 9.7b).

Table 9.3 May and July densities of NEGOA coastal birds (Arneson, ADF&G, pers. eomm.).

Group of birds

Loons

Giebes

Cormorants

Swans and geese

Dabbling ducks

Diving ducks

Sea ducks

Mergansers

Raptors

Cranes

Shorebirds

Gulls and jaegers

Terns

Alcids

Corvids

Other passerines

Other birds

Totals

Densities (birds/km”) in each section

May July

1 2 3 4 5 6 7 8 9 10 11 Av. 1 4 5 6 Av.
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Figure 9.7 Spring (a) and summer (b) densities of NEGOA coastal birds (Arneson,  ADF&G,
pers. Comm.).
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9.3.3 NEGOA bird colonies Table 9.4 Estimates of breeding population at NEGOA bird colonies (Sowls et al., 1978).

Approximately 260,000 birds nest in the colonies

of NEGOA (Table 9.4, Sowls et al., 1978). Most of the

colonies and about 97 percent of the total breeding

population are located in the eastern part of Prince

William Sound and on Middleton Island (Table 9.4,

Fig. 9.10). The most abundant are the Glaucous-winged

Gull (9 percent; Fig. 9.lla), Black-legged Kittiwake

(74 percent; Fig. 9.llc), Common Murre (7 percent; Fig.

9.llf), and Tufted Puffin (6 percent; Fig. 9.llg).

No bird colonies have been found between Cape

Suckling and Icy Cape. Just outside NEGOA another

47,000 birds are found in colonies in western Prince

William Sound. The colonies in or near Icy, Yakutat,

and Dry Bays are important for coastal nesting Mew

Gulls (Fig. 9.llb) and Arctic (Fig. 9.lld) and Aleutian

Terns (Fig. 9.lle). Colonies in NEGOA comprise more

than 20 percent of the Gulf of Alaska breeding popula-

tions of Mew Gull, Black-legged Kittiwake, and Aleutian

Tern. The only known Alaskan nesting colony of

Brandt’s Cormorant (11 birds) is located in eastern

Prince William Sound.

The Black-legged Kittiwake colony on Middleton

Island is noteworthy for its rapid growth over the last

two decades and for its use of nesting habitat atypical

of the species (Hatch et al., 1979). Rausch (1958)

estimated a breeding population there of 10,000 to

15,000 birds in 1956. Hatch et aI. (1979) estimated

150,000 in 1978. The 1964 Prince William Sound earth-

Species Region
Percent

Eastern Prince (Total Prince*k Middleton Cape Suckling Icy Cape Dry Bay to Gulf of Alaska
William Sound William Sound) Island to Icy Cape to Dry Bay Cape Spencer Totals population

Fork-tailed Storm-Petrel ? (5,000) ? ?
Leach’s Storm-Petrel (400)
Cormorant (sp.) (79)
Double-crested Cormorant 402 (421) x 402 13.7*
Brandt’s Cormorant 11 (11) 11 100
Pelagic Cormorant 430 (472) 4,682 x 80 5,192 33.7
Red-faced Cormorant 170 (320) 1 171 0.8
Harlequin Duck 3 (3) 2 5 ?

Bald Eagle 8 (14) 8 7
Peregrine Falcon 2 (2) 2 ?

Black Oystercatcher 26 (74) 18 44 ?

Glaucous-winged Gull 16,894 (21,148) 1,140 4,400 40 22,474 13.1
Herring Gull x x ?

Mew Gull 60 ;179) 725 785 25. 1*
Bonaparte’s Gull (80)
Black-legged Kittiwake 39,496 (58,396) 150,494 250 1,600 191,840 20.3
Arctic Tern 462 (2,644) 1,110 1,552 14.6*
Aleutian Tern 350 350 31.0
Common Murre 12,510 (12,760) 6,596 46 19,152 9.5
Thick-billed Murre x (x) 207 207 13.4
Pigeon Guillemot 276 (1,582) 37 x 313 1.2
Marbled Murrelet (x)
Ancient Murrelet ? (x) ? ?

Parakeet Auklet (451) .-

Rhinoceros Auklet 1,316 1,316 1.2
Horned puffin 116 (1:284) 4 120 0.1
Tufted Puffin 13,070 (26,300) 3,500 2 80 16,652 1.4

Totals 83,936 (131,620) 167,936 6,894 1,850 260,616 7.8

X = present, * = coastal populations only, $r$r = Total prince William Sound populations not included in NEGOA totals.

quake raised the island about 5 m and exposed large viously available. The causes of the growth of this

areas of flat land previously under water. Kittiwakes colony are not fully understood. While the availa-

usually nest on the faces of steep cliffs, but on bility of new habitat has contributed to the population

Middleton they make extensive use of flat areas, both growth, the more intensive use of previously available

those exposed by the 1964 earthquake and those pre- habitat suggests that other factors are also important.
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Figure 9.lla Distribution of Glaucous-winged Gull colonies (Sowls et al., 1978).
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9.3.4 Endangered species

The endangered Aleutian Canada Goose (Branta cana-

densis leucopareia) is not known to occur in the Gulf

of Alaska (P. Springer, U.S. Fish & Wildlife Service,

Aleutian Canada Goose Recovery Team, pers. comm.). The

only known breeding ground is Buldir Island, at the

western end of the Aleutian Chain (Woolington  et al.,

1979) . A small flock of Canada Geese has been found on

the Semidi Islands each summer since 1977 (S. Hatch,

University of California, pers. comm.). At least three

pairs bred in 1979. Sufficient information to deter-

mine the subspecies of these birds is not yet avail-

able, but they are known to have several of the char-

acteristics of leucopareia. Current evidence indicates

that in fall the geese breeding on Buldir migrate east

along the Aleutians to about Unimak Island and then fly

across the Pacific to California (Fig. 9.12). In the

spring they move north along the Oregon and Washington

coasts before making a direct flight to the Aleutians.

Recently a flock of about 80 Aleutian Canada Geese

suspected to represent an unknown breeding flock was

found staging on the Oregon coast (Springer, pers.

Comm.). Most of the birds on Buldir have been marked

with leg bands or neck collars; n6ne

this Oregon flock was marked. On the

knowledge, it appears unlikely that

NEGOA would present a hazard to the

of the birds in

basis of current

development in

preservation of

this goose. On the other hand, current knowledge is

too incomplete to be certain that the Aleutian Canada

Goose does not occur in NEGOA.

Three subspecies of the Peregrine Falcon (Falco

peregrinus) breed in Alaska. Pealei is a dark-plumaged

race which is resident along the southern coast of

Alaska and on the Aleutian Islands. Its populations

are not considered to be threatened. The two endan-

gered light-plumaged  subspecies (anatum and tundrius)

breed in the interior and in northern Alaska. Both

races are highly migratory and winter from the southern

United States to southern South America. The birds can

be found throughout North America during migration.

The current status of North American Peregrine Falcon

populations has been reviewed by Schaeffer and Ehlers

(1978) .

\ ,.
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Figure 9.12 Distribution of the Aleutian Canada Goose
(after Palmer, 1976). Only known breeding location is
Buldir Island, but there is evidence that it may breed
elsewhere (see text for details).

9.4 POPULATION DYNAMICS

The population dynamics of a species comprise the

birth and death statistics for the population. For

birds these include the number of eggs laid per clutch,

the frequency at which clutches ,are laid, the survi-

vorship of eggs and young, the age of first repro-

duction, and the subsequent survival of adults through-

out their lifetime (Ricklefs,  1973).

Current evidence is consistent with the theory

that the clutch and brood size of seabirds correspond

to the most young the parents can adequately feed

(Lack, 1968; Ricklefs, 1973; Nelson, 1978). Species

which feed offshore, such as tubenoses, murres, auk-

lets, and puffins, have a clutch of one, while species

which feed inshore, such as cormorants, gulls, terns,

guillemots, and murrelets, have a clutch of two to four

(Lack, 1968; Ashmole, 1971); thus clutch size is nega-

tively correlated with the distance adults travel to

obtain food. In Alaska the breeding season is so short

that marine birds can rear only one brood per season.

However, many species will lay a second clutch if the

first is lost early in the season.

The breeding phenologies for 10 species of marine

and coastal birds “on Middleton Island (Hatch et al.,

1979) and the Wooded Islands (Mickelson  et al., 1978)

in 1976 and/or 1977 are shown in Fig. 9.13. Eggs of

all species were laid between 23 April and 12 July.

Leach’s Storm-Petrel (Oceanodroma leucorhoa) began

laying later than any other species in both years.

Hatching began 20 May and continued to 27 August. The

fledging period started on 3 July and continued to 14

August for most species. It continued into October for

storm-petrels and puffins and was shortest for murres.

Except for Leach’s Storm-Petrel and Tufted Puffins, the

species nesting on Middleton Island nested about two

weeks earlier in 1978 than did the same species on the

Wooded Islands and those in colonies in the Cook

Inlet-Kodiak area in 1976 and 1977. For some species

the entire breeding effort was protracted compared to

other locations in the Gulf of Alaska. Hatch et al.

(1979) suggest that the differences in breeding

phenology found on Middleton Island could be attributed
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Table 9.5 Reproductive success in marine birds (see text for sources). The growth potential of populations

Species Locationa Year Number ofb Clutch Eggs Chicks Chicks Productivity
active nests size hatched/ fledged/ fledged/ (young/pair)

observed eggs laid chicks eggs laid
hatched

Fork-tailed Storm-Petrel
Fork-tailed Storm-Petrel
Fork-tailed Storm-Petrel
Fork-tailed Storm-Petrel
Pelagic Cormorant
Glaucous-winged Gull
Glaucous-winged Gull
Glaucous-winged Gull
Glaucous-winged Gull
Glaucous-winged Gull
Black-legged Kittiwake
Black-legged Kittiwake
Tufted Puffin

WI
WI
WI
WI
MI
WI
EI
EI
DB
DB
MI
WI
WI

1976C
1977;
1977
1977e
1978
1977
1975
1976
1975
1977
1978
1977
1977

69
?
?
?

102
27

153
186
100
112
148
109
56

1.00
1.00
1.00
1.00
2 . 8 4
2.67
2 . 4
2 . 4
?
2 . 9 3
1 .94
1.62
1.00

0 . 8 4
?
?
?
?
?
0 .69
0 .77
?
0.927
0.625
0.604
0.464

?
?
?
?
?
?
0.90
0.79
?
0.533
0.143
?
“few”

0.31
0.25
0.68
0.64
0.22
?
0 .62
0.61
?
0.494
0.089
?
“few”

0.31
0.25
0.68
0.64
0.64
?
1.48
1.46
?
1.45
0.17
?
?

a Locations: DB = Dry Bay Nests in soil
EI = Egg Island : Nests in soil protected from predators
MI = Middleton Island e Nests in rock
WI = Wooded Islands

b An active nest contained at least one egg

disturbance. Birkhead (1977a) observed that regular

visits to measure chicks of the Common Murre greatly

increased mortality. While the restricted activities

of OCSEAP investigators appear to have had little

effect on these populations, sustained human activity

in or near marine bird colonies will wreak havoc among

them.

The postfledging survival of marine birds is

difficult to measure, especially since the onset of

sexual maturity is usually delayed. Several species of

gulls, te’rns, and alcids continue to feed young after

they leave the breeding colonies (Asbmole, 1971).

Survival rates of young birds are low during their

first’ winters but they increase to adult rates as the

birds reach maturity (Asbmole, 1971; Ricklefs, 1973).

The age at sexual maturity may be as late as nine to

twelve years in large seabirds. The age at onset of

reproduction is correlated with the annual survival

rate of adults. Delayed reproduction thus has the

effect of restricting the recruitment of young into the

breeding population to a rate which corresponds to

adult losses (Lack, 1966; 1968).

Once marine birds reach the age of reproduction,

they have high survival rates, typically 93 to 97

percent for tubenoses, 80 to 85 percent for cormorants,

and 81 to 96 percent for gulls, terns, and alcids.

Bird populations appear to maintain themselves

near some equilibrium size (Ricklefs, 1973). The

growth potential of a population determines how rapidly

it can return to this equilibrium after a reduction in

size or at what rate it can be exploited without

change.

The theory of population growth and regulation was

developed from observations and experiments on many

species (Lack, 1954; Hutchinson, 1978). The relative

importance of the many factors which regulate popula-

tions, however, is still hotly debated. Small popu-

lations with unlimited resources have been found to

grow exponentially. Most of the evidence concerning

such populations comes from experiments, since natural

populations in this stage are rarely available for

study. The classic field example for birds is Einar-

sen’s (1945) study of a Ring-necked Pheasant (Phasianus

colchicus)  population introduced on Protection Island,

Washington. In five years the population grew from 8

to 1,325. As a population grows, it eventually strains

its resources and becomes more vulnerable to predation

and disease. The result is that reproduction and

survival fall until recruitment balances mortality.

The regulation of most bird populations appears to

depend on density, but density-independent sources of

mortality, such as storms or landslides, are sometimes

important , at least locally.

Because density-dependent factors act most strong-

ly on dense populations, the growth potential of a

population is least restricted when its numbers are

least. This, however, is also the time at which it

faces the greatest probability of extinction by random

accident. The balance between the capacity for popu-

lation increase and population density, which can
ordinarily carry a population through ‘most of its
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80-

It is predicted that a Common Murre population

would take about 5(I years to recover from a catastrophe

that killed 50 percent of the adults, a Thick-billed

Murre population about 20 years, and a Black-legged

Kittiwake population about 10 years. These differences

are due to the differences in estimates of the fe-

cundity or survival of the species. Thick-billed

Murres had a higher fecundity than Common Murres, and

Black-legged Kittiwakes had a higher rate of adult

survival than murres.

Changes in the annual survival of adults were

found to have drastic effects on recovery time (Wiens

et al., 1979) . For Common Murres a one-percent de-

crease in annual adult survival is predicted to cause a

fourfold increase in recovery time, whereas a one-

percent increase would cause only a 1.7-fold decrease

in recovery time (Fig. 9.15). This outcome suggests

that the population could not recover if annual adult

survival decreased more than 1.3 percent. The model

does not, however, include any density-dependent com-

ponents which could influence fecundity and survival

and thus decrease recovery times.

The model predicts that the effects of long-term

chronic sources of mortality could cause more damage to

a population than a short-term catastrophe. While

Wiens et al. (1979) were concerned mainly with the

effects of oil development on bird populations, dis-

turbances caused by the fishing industry, such as the

death of birds in fishing gear or reduction of the food

supply, could also be important.

The results presented here vary with changes in

the values of survivorship and fecundity used in the

simulations (Wiens et al., 1979). The environmental

causes of the variability in these and other population

parameters are not well understood. In a 28-year study

of breeding Northern Fulmars in Orkney, Dunnet et al.

(1979) found a year-to-year variation in the number of

breeding birds of -37 to +50 percent while the colony

was in a long-term growth, and of -34 to +26 percent

while the colony was in a long-term decline. The

causes of this variability were not identified but were

thought not to be from human activities. Growth and

decline in seabird populations are highly unpredictable

and will remain so as long as we are ignorant of the

environmental causes

vival and fecundity.

-1.2% – 1 .0%

‘ OO 1 / /

of the variation in annual sur-

–0.5% 0%

/ /
+0.5%
/

20 “ 40 - 60 80 100

% one-time adult mortality

Figure 9.15 Time to recovery as a function of one-
time mortality at different levels of change in the
mean adult annual survival rate of Common Murres (Wiens
et al., 1979).

9.5 TROPHICS

An understanding of the feeding ecology and diet

of marine and coastal birds gives insight into the

roles that various species play in local ecosystems.

To identify their roles in food webs and in nutrient

and energy cycles, however, specific dietary infor-

mation is needed. Specializations in prey and habitat

requirements are often identified from trophic data.

Currently, little information is available on the

ability of birds to alter their diet or on the kind of

habitat in which they feed when the availability of

food changes suddenly. Many species have been observed

to change their diet according to seasonal changes in

prey populations, to have different food preferences in

different geographic regions, and to exploit feeding

habitats during migration which differ from those used

on the breeding or wintering grounds. These differ-

ences, however, occur gradually in time and space and

are highly predictable. If the change is sudden and

unpredictable, as when the food supply is suddenly

reduced during the occurrence of El Nifio along the

Peruvian coast (Ashmole, 1971), vast numbers of marine

birds may die.

9.5.1 Diet of adults

Data on the diets of adult marine birds from NEGOA

are not currently available. Data from other areas in

the Gulf of Alaska S how that capelin (Mallotus

villosus)  and other fish are the major prey of Sooty

Shearwaters, Black-legged Kittiwakes, Common Murres,

and Horned and Tufted Puffins (Sanger et al., 1978;

Sanger and Baird, 1977). Although capelin are not a

major food item of Short-tailed Shearwaters, by their

sheer numbers the amount this species consumes is
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species. The heavy use of capelin by birds in other

areas of the Gulf of Alaska seems to follow a pattern

similar to that found by Harris and Hislop (1978).

Hatch et al. (1979) report normal growth rates for

kittiwakes and puffins on Middleton in spite of the

lack of capelin in the chicks’ diet.

9.5.3 Formation of flocks

Wiens et al. (1978b) studied the formation of

feeding flocks in pelagic areas near Kodiak Island.

They found that Black-legged Kittiwakes initiated 84

percent of the mixed feeding flocks they observed to

form (Table 9.7). They concluded that other species

rely on kittiwakes to locate food. Their observations

of the responses of cormorants and Horned Puffins to

foraging kittiwakes (Table 9.8) support this conclu-

sion. They also present evidence that puffins have

difficulty in locating schooling fish and suffer im-

paired breeding success when kittiwakes are scarce. It

thus appears that a decrease in kittiwake populations

caused by petroleum development activities at their

nesting cliffs could have detrimental effects for other

species.

Baird and Moe (1978) suggest that Arctic terns

initiate feeding flocks in Sitkalidak Strait, but they

do not present sufficient evidence to establish the

role of each bird species in flock organization.

Both research teams cited above observed the

occasional participation of mammals in these mixed

feeding flocks. Wiens et al. (1978b) found that, in

the formations observed, northern sea lions and harbor

seals initiated all of the mixed feeding flocks in

which they occurred (Table 9.7).

Table 9.7 Species roles in mixed species feeding
flock formation (Wiens et al., 1978b).

9.6 EFFECTS OF POLLUTION

Number of
flocks in Number of Percent

Species which species flocks species of flocks
occurred initiated initated
(N= 112)

Sooty Shearwater

Short-tailed
Shearwater

Cormorants

Glaucous-winged
Gull

Black-legged
Kittiwake

Horned Puffin

Northern sea lion

Harbor seal

3 1 33

27 9 33

31 2 6

23 2 9

101 85 84

52 7 14

4 4 100

2 2 100

Table 9.8 Species’ responses (%) to behavioral cues
of Black-legged Kittiwakes in feeding flock formation
(Wiens et al., 1978b).

Kittiwake behavior

Plunge & Plunge &
leave circle

Species Response (N=54) (N=26)

Black-legged
Kittiwake Positive 94 100

Negative 6 0

Horned Puffin Positive o 73
Negative 100 27

Cormorants Positive 2 88
Negative 98 12

Two kinds of hazards to bird populations in the

Kodiak area can result from petroleum development:

contamination of the environment by oil and disturbance

by humans. Most dramatic and visible are the oiling

and death of large numbers of birds and the littering

of beaches with their bodies from a catastrophic spill

or blowout. An estimated 100,000 birds, mostly alcids

and waterfowl, died near Kodiak during the winter of

1970 as the result of petroleum contamination, thought

to be ballast dumped by tankers entering Cook Inlet

(Bartonek et al., 1971, cited in McKnight and Knoder,

1979).

Less spectacular, but more likely to occur, is

chronic spillage from platforms, pipelines, terminal

and storage facilities, and tankers. Indeed, chronic

pollution in “areas where oil development and transport

activities are taking place probably kills more birds

every year than die after a single catastrophic spill’*

(McKnight and Knoder, 1979). Most oil-caused mortality

of seabirds in Danish waters was found to result from

generally unnoticed pollution (Joensen, 1972).

The effects of oil pollution on birds may be

direct or indirect. Most obvious is the direct fouling

of the plumage by floating oil. Even small amounts of

oil on the plumage can destroy buoyancy, waterproofing,

and insulation. Affected birds may drown, starve, or

die from exposure. Clark (1970] has pointed out that

“by mischance, the species most vulnerable to oil

slicks have an exceptionally low reproductive rate.”

Oil may be ingested during feeding or preening.

The effects of ingested oil on birds are under in-

vestigation. Miller et al. (1978) reported that young

gulls ceased to grow when fed crude oil, due to altera-

tion in the intestinal transport of nutrients. German
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Contamination of the food supply would be es-

pecially serious, because of the short food chains and

lack of alternative food sources. An expected result

would be a decrease in the carrying capacity of the

habitat for marine birds (McKnight and Knoder, 1979).

Other elements of the food chain would then be affected

as well. The bird groups most likely to be affected by

oil development are alcids, which constitute the ma-

jority of birds inhabiting coastal areas in winter, and

the sea ducks, because of their diving and flocking

habits and their flightless molt period (McKnight and

Knoder, 1979).

King and Sanger (1979) have devised an Oil Vulner-

ability Index (OVI) for marine birds of the northeast

Pacific. It is based on such characteristics of the

species as range, population, habits, mortality, and

exposure to oil development. Birds with high indices

are more vulnerable to oil development than those with

lower indices. King and

alcids and sea ducks are

Table 9.9 shows OVI’S for

are arranged according to

King and Sanger (1979) ,

Sanger (1979) confirm that

the most vulnerable groups.

water birds of NEGOA. They

ranges of OVI. According to

an OVI of 1-20 indicates

species with low vulnerability; damage or future costs

would not be expected. An OVI of 21-40 indicates

species for which there is low concern. An OVI of

41-60 indicates species for which it would not be

considered catastrophic if some birds were adversely

affected. However, these species should be monitored

to be sure that their status is not adversely affected.

An OVI of 61-80 or 81-100 indicates species where

concern is high. Comparing this table with King and

Sanger’s Tables 4 and 5 , which illustrate OVI’S for 109

species of birds of southeast Alaska and 123 species of

birds of the Aleutian Islands, respectively, shows that

the number of species in NEGOA with a higher OVI is

greater than the number in southeast Alaska, and simi- Another hazard to birds living in NEGOA relates to

lar to that in the Aleutian Islands. This indicates the physical environment. An oil spill in cold regions

that the birds of NEGOA, as a whole, are more vulner- “could have greater adverse consequences than an

able to oil development than are those of southeast equivalent spill at lower latitudes” (Norton} 1977).

Alaska. Degradation of spilled oil by microbes would take place

Table 9.9 Oil Vulnerability Indices of NEGOA marine birds.

OVI 1-20 OVI 21-40 OVI 41-60 OVI 61-80 OVI 81-100

Scaled Petrel 1 Great Blue Heron
Canada Goose
White-fronted Goose
Snow Goose
Mallard
Gadwall
Pintail
Common Teal
American Wigeon
Northern Shoveler
Sandhill Crane
Semipalmated Plover
American Golden Plover
Whimbrel
Spotted Sandpiper
Greater Yellowlegs
Lesser Yellowlegs
Red Knot
Pectoral Sandpiper
Baird’s Sandpiper
Least Sandpiper
Semipalmated  Sandpiper
Common Snipe
Long-tailed Jaeger
Herring Gull
Bonaparte’s Gull
Arctic Tern
Common Raven

29
34
36
32
36
38
36
34
36
34
24
28
35
37
24
30
30
39
32
34
34
34
29
39
38
40
32
21

Common Loon
Arctic Loon
Red-throated Loon
Horned Grebe
Red-necked Grebe
Black-footed Albatross
Laysan Albatross
Northern Fulmar
Sooty Shearwater
Short-tailed Shearwater
Double-crested Cormorant
Brandt’s  Cormorant
Whistling Swan
Canvasbacks
Greater Scaup
Common Goldeneye
Barrow’s Goldeneye
Bufflehead
Oldsquaw
Harlequin Duck
Common Merganser
Red-breasted Merganser
Bald Eagle
Peregrine Falcon
Black-bellied Plover
Wandering Tattler
Red Phalarope
Northern Phalarope
Black Turnstone
Ruddy Turnstone
Surfbird
Rock Sandpiper
Dunlin
Western Sandpiper
Sanderling
Short-billed Dowitcher
Long-billed Dowitcher
Pomarine Jaeger
Parasitic Jaeger
Glaucous Gull
Glaucous-winged Gull
Thayer’s Gull
Mew Gull
Black-legged Kittiwake
Sabine’s Gull
Aleutian Tern
Northwestern Crow

47
58
49
48
44
50
52
57
51
53
52
57
50
52
52
48
56
52
66
60
56
56
58
41
43
48
58
62
57
44
54
59
41
47
45
45
47
41
43
45
56
42
44
49
44
53
47

Yellow-billed Loon 65 Pigeon Guillemot 82
Fork-tailed Storm-Petrel 67 Marbled Murrelet 84
Leach’s Storm-Petrel 63 Kittlitz’s Murrelet 8 8
Pelagic Cormorant 63 Cassin’s Auklet 84
Red-faced Cormorant 67
Trumpeter Swan 63
Black Brant 70
Emperor Goose 70
White-winged Scoter 72
Surf Scoter 72
Common Scoter
Black Oystercatcher ::
Common Murre 70
Ancient Murrelet 74
Parakeet Auklet 80
Rhinoceros Auklet 74
Horned Puffin 72
Tufted Puffin 72

TOTALS 1 903 2328 1251 338
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CHAPTER 10 MAMMALS

Bruce R. Mate, SAI

10.1 INTRODUCTION

Four distinct types of mammals inhabit the marine

environment in the Gulf of Alaska: the cetaceans,

which include the whales, dolphins, and porpoises; the

pinnipeds, which include the seals, fur seals, sea

lions, and the walrus ( Odobenus rosmarus]; the sea

otter (Enhydra lutris) ; and several land mammal species

which frequent the beaches, littoral zone, and occa-

sionally shallow marine water, principally to feed.

The last category includes bears, foxes, the river

otter (Lutra canadensis),  and deer. All of these spe-

cies have been exploited by man. Native peoples and

others have used them as sources of food, pelts, and

other by-products; several species have been hunted for

sport and some have been widely killed as pests.

The Marine Mammal Protection Act of 1972

(PL-92-522)  fully protects most marine mammal species

from any exploitation except: (1) harvest for subsis-

tence or cultural use by native peoples; (2) scientific

studies by permit; (3) incidental take by fisheries

under permits; (4) northern fur seal management;

(5) capture for public display by permit; and

(6) return of management to states complying with

federal regulations. The State of Alaska has attempted

to regain management authority for nine species since

passage of the act, but has been unsuccessful, except

for walrus. After litigation on the regulation of

subsistence harvests , walrus management was returned to

the federal government. As a result, virtually all

marine mammal management is regulated by federal sta-

tute (MMPA, Endangered Species Act of 1973 (16 U.S.C.

1531-1543; 87 Stat. 884)) or international treaty

(Convention on Conservation of North Pacific Fur

Seals) . Several populations of each of the species of

large cetaceans have been so depleted that they have

been designated as endangered or threatened by the

Endangered Species Act of 1973 and by the International

Whaling Commission. Northern fur seals are harvested

by the U.S. under the Convention on Conservation of

North Pacific Fur Seals (CNPFS), signed by Japan, the

U.S.S.R. , Canada, and the U.S. The most significant

law for planning OCS development is the Marine Mammal

Protection Act, which requires that marine mammal

stocks should not be permitted to diminish
beyond the point at which they cease to be a
significant functioning element in the eco-
system of which they are apart, and, consis-
tent with this major objective, they should not
be permitted to diminish below their optimum
sustainable population.

Furthermore, it is required that such stocks

should be protected and encouraged to develop
to the greatest extent feasible commensurate
with sound policies of resource management and
that the primary objective of their management
should be to maintain the health and stability
of the marine ecosystem.

Considerable knowledge of the biology of Alaskan marine

mammals and of the marine ecosystems in which they live

is necessary to design a plan for the development of

Alaska’s petroleum resources which meets the letter and

spirit of this act. OCSEAP research on marine mammals

has focused on obtaining such knowledge.

Little is known about most marine mammal species.

Even enumeration of the populations can be difficult.

Most current studies are basic , emphasizing descriptive

natural history. Comprehensive data may never be

available, even for a single tract. Thus , data col-

lected from other areas may have to be used for plan-

ning of development. Although a site may be of only

seasonal importance to these highly migratory mammals,

lease decisions may require

of a species over its entire

All marine mammals are

sea, and they share many

examination of the status

range.

modified for living in the

characteristics. As they

spend much of their time in cold waters, most have

adaptations to maintain body temperature, such as thick

layers of subcutaneous fat and countercurrent heat

exchangers in the circulation to the extremities. Some

species also have heavy pelage. The species which rely

almost exclusively on their fur for insulation, such as

the northern fur seal (Callorhinus ursinus) and the sea

otter, are particularly vulnerable to oil, since even a

small amount of it fouling their pelage destroys their

insulation. All Alaskan marine mammals are carnivores

and are frequently at the highest trophic level in

their food webs. Thus, they may be affected by changes

in the abundance and quality of organisms lower in the

web.

Current knowledge of the marine mammals which

occur in NEGOA is discussed below according to their

dependency on the sea. The discussion begins with the

cetaceans , which spend their entire lives in the water,

and ends with species which venture into marine en-

vironments only occasionally.
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(Megaptera novaeangliae), and right whale (Balaena of this species along the eastern Pacific. The gray

glacialis). All except the minke whale have been whale calves and breeds from December through April in

designated as endangered or threatened. Bryde’s whale three major lagoon areas on the Pacific side of Baja

(Balaenoptera edeni), which occurs in the temperate California and migrates north in the spring through

North Pacific, and the bowhead whale (Balaena shallow

mysticetus) , which is found in arctic waters, might Bering,

possibly stray into the gulf , although this is unlikely 1971).

and there are no records of its occurrence. a round

waters to its summer foraging areas in the

Chukchi, and Beaufort Seas (Rice and Wolman,

This is the longest known mammalian migration,

trip of 10,000 to 22,000 km (Vaughan, 1972),

The migration of the gray whale is the best known Observations of gray whales made during the northbound

of the large whales because of the nearshore movements spring migration through NEGOA are shown in Fig. 10.1.

147° 146° 145° 144° 143° 142° 141° 140° 139° 12R”

I GRAY WHALE
. . .

~ Migratory route
❑ Spring  observation
❑ Fall observation

I # Aerial sightings, April lg77

~\:__x_T 1

200’ “ \.,,,

II \-
1 I I I I I I I

147° 146° 145° 144° 143° 142° 141” 140° 139”

Southbound migration in the fall is probably similar.

Both migrations are very close to shore, although

migrating gray whales have occasionally been sighted

offshore (Braham,  1977; Braham et al., 1977; Hall,

1979). In some areas, during good weather in autumn,

about 70 percent of the migrants are found within 700 m

of the shore (Rugh and Braham,  1978; Hall, 1979). Most

of the sightings in NEGOA are in waters less than 200 m

deep.

Observations at Unimak Pass (the closest navigable

channel of the Aleutian chain to the Alaska mainland),

off central Oregon, and off southern California have

documented the timing of the fall and spring migrations

and also have produced the first accurate population

estimates by season through direct observation for any

of the large whales. Recent radio tagging of a gray

whale indicates that the northbound migration speed is

approximately 110 km/day (Mate, unpub. data).

While more is known of the seasonal movements of

this species than of those of any other large whale,

little is known of its offshore distribution in its

shallow arctic and subarctic feeding areas. Although

previously thought to feed only in the latter areas,

gray whales have been observed feeding during the

migration and in summer in more temperate areas (Dar-

ling, unpub. data; Sumich and Mate, unpub. data).

Figure 10.1 Probable migratory route of the gray
whale (Braham, National Marine Mammal Laboratory,
unpub. data; Hall, 1979; Hall and Tillman, 1977).
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Figure 10.4 Generalized food web showing predation by
swallowing and skimming baleen whales on main food
sources. “Skimmers” strain a long column of water with
the mouth continuously open, whereas “swallowers” gulp
a mouthful at a time, then close the mouth, squeeze the
water out, and retain the food (modified from Mitchell,
1978) .

10.2.2 Toothed whales, dolphins , and porpoises (Odon-

toceti)

Odontoceti are distinguished from other cetaceans

by their teeth. Unlike most other mammals, they have

permanent dentition at birth. They are the most impor-

tant cetaceans in terms of abundance, diversity, and

widespread distribution.

Distribution

The Odontoceti  include about 74 recent species.

Of these,

the Gulf

dolphin

(Orcinus

Dan porpoise (Phocoenoides dalli) , beluga

(Delphinapterus leucas), and sperm whale. The sperm

whale has been designated an endangered species.

Fiscus et al. (1976) list six more species which occur

casually or hypothetically in the gulf. It is likely

that other Pacific species occasionally enter gulf

waters.

The area southwest of Kodiak was once an important

area for sperm whales. The distribution of sightings

of Pacific whitesided dolphin, killer whale, and harbor

porpoise in NEGOA (Fiscus et al., 1976; Mercer et al.,

about six occur regularly or frequently in 1977) for all seasons 1958 through 1976 is shown in

of Alaska (Table 10.3): Pacific whitesided Fig. 10.5. The distribution of these sightings, like

(Lagenorhynchus  obliquidens), killer” whale those of baleen whales, suggests that these species

orca), harbor porpoise (Phocoena phocoena), prefer areas within the shelf break.

Table 10.3 Seasonal presence, habitat type, and areas of peak occurrence of toothed cetaceans most commonly reported
in NEGOA (Braham, pers. comm.).

Species Season$r Habitat type Areas of probable
Winter Spring Summer Fall peak occurrence

Killer whale FM FM M? Coastal/pelagic ?
Harbor porpoise F?+ c’?+ CF F Shallow bays/rivers/ coastal waters

estuaries
Dan porpoise F? C?FM7 FM? F Deeper bays/shelf/ common pelagically

slope
Beluga F? Cf’F F+ F Bays/rivers/estuaries Cook Inlet, winter?
Sperm whale*’~ F? Offshore ?

‘~Winter = Dec-Feb, Spring = Mar-May, Summer = Jun-Aug, Fall = Sep-Nov
C = suspected calving area
F = feeding grounds
M = migration route
+ = nearshore waters appear to be critical during annual life cycles
J.&,, /, = endangered species
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deaths of 11 cetaceans found stranded on California

beaches after the Santa Barbara Channel oil spill.

Possible effects of oil on cetaceans can be inferred

from current knowledge of these animals. Tinyakov et

al. (1973) and Dargoltz et al. (1978) report that the

cetacean epidermis has high metabolic activity. Since

the outermost layer is unkeratinized (Ling, 1974), oil

contacting the skin surface might affect ionic regula-

tion and water balance. Heavy oils might clog baleen

plates, while light oils might damage their structural

integrity. Studies on the fouling of baleen by oil are

under way. The effects of ingested or inhaled oil are

unknown. Carpenter et al. (1978) report that prolonged

inhalation of hydrocarbons by rats caused central

nervous system disturbance, bronchopneumonia, and

death.

Cetaceans produce a wide variety of sounds which

are believed to be important in their communication and

navigation (Caldwell  and Caldwell, 1972; Thompson et

al., 1979) . Background noise from human activities

could cause social disruption or echo-confusion. The

effects of noise on cetaceans are under study.

10.3 PINNIPEDS

Pinniped morphology and behavior have been modi-

fied for an amphibious marine life. All species use

the land (or ice) to breed, give birth, and molt. The

harbor seal (Phoca vitulina) may spend time on land

daily, while the northern fur seal may spend from six

to eight months at sea. Pinnipeds appear awkward on

land, but some can move quickly and many species haul

out only near the water’s edge, perhaps to reduce the

risk from land-based predators. Perhaps in response to

land-based predators and human harassment, many

rookeries and haulouts are on islands.

The northern fur seal (Callorhinus ursinus) is

believed to have the longest migratory path of all

pinnipeds and may travel 10,000 km a year. Scheffer

(1958) estimated the top swimming speed of a northern

(Steller) sea lion (Eumetopias jubatus) to be 29 km/hr.

The body of pinnipeds is enveloped in a thick layer of

fat, which provides insulation and an energy reserve

during lactation and fasting. The eyes are large,

which may be an adaptation for feeding at night and in

deep or murky waters. Pinnipeds have slit-like nos-

trils, which are closed except when voluntarily opened

to breathe. The Weddell seal, an Antarctic species,

can dive to depths

over 45 minutes on

sen, 1969) . Dives

ported for several

of at least 600 m or stay submerged

a single breath (Kooyman and Ander-

of up to 20 minutes have been re-

species, including the harbor seal

(Scheffer and Slipp, 1944; Backhouse, 1954). Among

their adaptations to prolonged dives are slowing of the

heart rate, reduced blood flow to the limb muscles thus

conserving the available oxygen in the blood primarily

for the heart and brain, a high tolerance to C02 in the

tissues, large amounts of oxygen-storing myoglobin in

the muscles, and a more pronounced capability for

anaerobic (oxygen-less) metabolism than terrestrial

mamma 1s.

Members of two pinniped families occur regularly

in the Gulf of Alaska. The family Otariidae, the eared

seals, includes the northern (Steller) sea lion and the

northern fur seal, which are found year round, and the

California sea lion (Zalophus californianus), which is

seen occasionally during the winter. The family

Phocidae, true or earless seals, is represented year

round by the land-breeding harbor seal (lj’. y.

richardsi) and the occasional northern elephant seal

(Mirounga angustirostris).

Otariids swim primarily with their foreflippers

and rotate their hind flippers beneath their bodies for

quadripedal  locomotion on land. They have small ex-

ternal ears and heavy pelage (especially the fur

seals) . They are gregarious throughout the year and

gather in large breeding rookeries. Typically the

mature males are much larger than the mature females.

All species are polygynous, with males fighting for

breeding territories or access to females in estrus.

Pups may be suckled for over eight months in some

species.

Phocids swim primarily with their hind flippers

and cannot rotate them forward to be used on land.

Instead these animals rhythmically undulate the torso

forward or pull themselves forward using their fore-

flippers. Phocids lack external ears, and they have a

relatively short pelage. There are both monogamous and

polygynous species in the family. Pups are usually

weaned within six weeks (Pitcher and Calkins, 1980).

Distribution and abundance

The northern sea lion is distinctive in its use of

a few specific locations along the coast as rookeries

(for breeding and pupping) and hauling grounds. In

early May the adults gather on the rookeries, where

dominant bulls fight for territories. Females arrive

and pupping, followed by mating, takes place on these

territories. The bulls usually desert their terri-

tories by early July toward the end of the breeding

season. Many of the areas used as rookeries are also

used as hauling areas throughout the rest of the year.

Some locations are used exclusively as rookeries or for

hauling.

Northern sea lion haulout areas and rookeries

occur throughout the Gulf of Alaska

(Calkins and Pitcher, 1979). The size

population is in excess of 52,000 during

(Fig. 10.8)

of the adult
the breeding

Mammals 229



:JA32FIO8HAH

enoi1ifnsnoowoJ
anoiIifnonooIIQiH

(cJfTu2 uq r,IcpGr J) ET JO IJJITLIG2 cJJG

puqq ou fIL U919J LOOFGLTG2 lU IJq

Js pu qçcq pA op2GLAru ruqlAlqcr9J2

coU2TqGLpJG WOAGWGUI O1 2 J,OIJ TU 1P6 JJt O

flTG 2JJJ pEGJ çpLOnJOfTJ- AGL (WGLcGL Gç 9J

001

. .
m

o-l

!7
--

-!

-J

1

m

I

0 H-I
m IFi u

n w *
n

-J 03
m &’ !3-

in
.

0 l+?
m w

0 th
rn m m

!-f
.

w 1+
W m w

d (TI
H m P-

J
WI 3 a

I-J w.
WY m E 03

“
0 M

w

m
.

rl’
*

w !-f
m 0

b 00
.

m *
.

0 HI l-h
a w

.
0 m

0 HI

gl
rt l-. 0 EJ

H s- (-D co (-D

b s CL
H 0 0 !% (D m P. m W

K
l-t m 2

w WY
P. u

R co w

w P.
.

H m w
%

F w
.

P. !5
in 0

in
H1



1. 1., . J i I. .1 .1 J I t..

I
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MOVEMENTS OF BRANDED SEA LIONS

O Branding site
- Observaticm site

1
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Figure 10.9 Movements of branded northern (Steller)  sea lions. Site of banding and site of relocation are con-
nected with straight lines; actual paths taken by the sea lions are unknown (CalkinS and pitcher, 1979)-

population migrate through NEGOA (Baker et al., 1963). August , and older animals continue through the area

Immature animals begin the southward migration in ‘ until the end of March. The northward migration to the

Pribilof breeding grounds begins in March and continues

through June. Peak populations are present in the gulf

during June and are lowest from August through October.

Northern fur seal movements through the Gulf of Alaska

are complex, with seasonal variation in number, age,

and sex. During the winter adult males probably con-

centrate in the Gulf of Alaska, while adult females

move farther south along the coast, reaching as far

south as California (Fiscus et al., 1976). The move-

ments of immature animals resemble those of adult

females. By April the adult males start to move toward

the breeding grounds as females become more numerous in

the Gulf of Alaska. With the major movement of adult

females, the gulf population reaches a peak in May. By

late June or early July, the population in the gulf

consists almost entirely of immatures. As the im-

matures also move toward the breeding grounds, the gulf

population reaches its lowest numbers during August

through October. Adult males would be most vulnerable

to the effects of OCS development during spring, early

summer, and early winter. Immatures could be exposed

year round to

would be less

Calkins

northern fur

the effects of petroleum development but

vulnerable during August through October.

(ADF&G, pers. comm.) reported that six

seals, including females up to six years

old, spent two to three weeks on the Barren Islands

during June and July 1978. Each year about 26,000

sub-adult males are harvested under the auspices of The

Interim Convention on Conservation of North Pacific Fur

Seals (USDC, 1980). The harvest and initial skin

processing employs around 80 resident Aleuts and pro-

vides them with their major source of income. The cost

of the harvest is about $440,000 annually while the

value of pelts brings about $800,000 to the Federal

Treasury (W. Kirkness, National Marine Fisheries Ser-

vice, in litt.).
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The land-breeding harbor seal, Phoca vitulina

richardsi, is the most abundant pinniped of coastal

Alaska from Dixon Entrance to the Bering Sea. An

ice-breeding harbor seal, Phoca larga, is found in the

commercial gi

30,000 seals

population is

were reported

Bering Sea and arctic waters. Common residents of

coastal waters throughout the area, harbor seals are

found at times in rivers and even some freshwater

lakes. Haulout areas incIude offshore rocks, sandbars,

beaches of remote islands and floating ice pans calved

from glaciers, when available. In winter, ice shelves

which form at the heads of bays are frequently used as

hauling platforms.

Harbor seals have a continuous distribution along

the shoreline of NEGOA (ADF&G, 1973; Pitcher and Cal-

kins, 1980; Fig. 10.8). Several traditional hauling

areas are well populated in NEGOA (Table 10.5). There

is no total estimate for the NEGOA populations, as only

a fraction of the animals haul out at a time. In the

Copper River Delta seals have been in conflict with the

Table 10.5 Observed harbor seal populations with more
than 125 individuals (Pitcher and Calkins, 1980).

Maximum Number of
Location Seals Observed Date

Disenchantment Bay 331 31 May 1976

Icy Bay 5,000 Summer 1975

Kaliakh River 200 28 May 1976

Controller Bay 186 26 Jul 1973

Cape St. Elias 350 Mar-Jun 1977-78

Copper River Delta 1,571 Aug 1975

Middleton Island 125 26 May 1976

lnet fishery for 30 years. As a result,

were killed from 1951 to 1958, but the

thought to have nearly recovered. Seals

as abundant on floating ice in Yakutat

Bay, where 300 were harvested in 1969. One of the most

spectacular concentrations of harbor seals was reported

from Icy Bay, where floating ice is used extensively in

the summer for pupping and hauling out. More than 1000

seals per year were harvested there for several years,

and several thousands were estimated to be present in

1973. Calkins et al. (1975) estimated the population

in excess of 5,000. When areas freeze in the winter,

harbor seals apparently disperse to other, unknown

areas. Calkins et al. (1975) estimated the Prince

William Sound population at more than 13,000. Pitcher

and Calkins  (1980) counted 8,100 harbor seals scattered

throughout NEGOA. Thus it is possible that the NEGOA

harbor seal population exceeds 25,000. East of NEGOA

the species has been reported to concentrate on ice-

bergs in Lituya Bay.

The highest population counts frequently occur

during the pupping and molting seasons, suggesting that

the species needs

harbor seals are

human disturbance

W. Johnson, 1977).

Harbor seals

to haul out at these times. Thus ,

probably particularly sensitive to

during pupping and molt periods (B.

are usually found in water less than

200 m deep; however, individuals have been sighted up

to 100 km offshore, and one radio-tagged seal moved 74

km from Tugidak Island and returned (Pitcher and Cal-

kins, 1980).

Population dynamics

Northern sea lion females become sexually mature

at three to six years of age and males at about four

years of age, although males may have to be much older

to compete successfully for breeding territories and

access to females in estrus. Eighty-one percent of all

females collected were found to be pregnant (Calkins

and Pitcher, 1978).

to mid-July, with a

Pitcher, 1977, 1978).

This species is

Pupping takes place from late May

peak early in June (Calkins and

polygynous. Males control breed-

ing territories. Most copulation occurs on the terri-

tories of the bulls. Some males have semi-aquatic

territories, which could result in an increased ex-

posure to oil. Mortality of a large fraction of the

population of breeding males, even though it repre-

sented only a small part of the total male population,

could have long-term genetic effects on the population,

as reproduction would then necessarily be carried out

by less competitive males. Because males frequently

fast during the breeding season, they may be more

vulnerable to disease, pollution, or changes in prey

abundance after the season than other age/sex classes.

Data on the vulnerability of the breeding males to

petroleum development activities are needed.

The Alaskan northern fur seal population (about

1.5 million) is managed by harvesting subadult males to

produce the maximum net productivity (largest harvest-

able numbers on a sustained basis; Scheffer, 1972).

The population is therefore held below carrying ca-

pacity (maximal numbers). The sex ratio and age dis-

tribution of the population are also manipulated for

maximum harvest (Marine Mammal Division, 1978).

Most of the Pribilof population migrate through or

winter in the Gulf of Alaska.

The population of the northern fur seal on the

Pribilofs was probably 2-3 million when first dis-

covered in 1786. After a century of heavy harvesting

fur seals had declined to an estimated low of 300,000

individuals in 1912. Under controlled management the
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nearshore waters (Spalding, 1964). Their diet in the

Gulf of Alaska is about 22 percent cephalopods and 74

percent fish (Pitcher and Calkins, 1980). In NEGOA

walleye pollock is the most important food species

(Table 10.6) .

10.3.1 Effects of development on pinniped activity

near rookeries and haulout areas

Harbor seals and other pinnipeds are known to

panic easily when disturbed by humans or low-flying

aircraft (B. W. Johnson, 1977; Loughrey, 1959). Such

disturbances could lead to separation of mothers and

pups and accidental injury or death of pups. When

adults return to colonies after such panics there may

be an unusually high level of territorial aggression,

which could be injurious to pups and adults. Inten-

tional repeated harassment in British Columbia caused

the abandonment of traditional northern sea lion rook-

eries (Bigg, pers. comm.).

Petroleum

Oiled and dead pinnipeds have been found after

several oil spills, but in almost all cases investi-

gators have been unable to attribute mortality directly

to oil (Simpson and Gilmartin, 1970; Brownell and

LeBoeuf, 1971; LeBoeuf, 1971; Spooner, 1967; Warner,

1969; Davis and Anderson, 1976).

Kooyman et al. (1976, 1977) showed that oiling

doubled the thermal conductance of the pelts of north-

ern fur seals, increased the conductance somewhat in

the pelt of a Weddell seal (Leptonychotes  weddelli),

but had no effect on the pelts of a California sea lion

or a bearded seal (Erignathus barbatus). These results

indicate that oiling would seriously reduce the insula-

tive properties of northern fur seals’ pelage, which

could make them unable to endure prolonged immersion in

cold water.

Geraci and Smith (1977) placed ringed seals (Pusa

hispida) in oil-covered water and observed irritation

and inflammation of the eyes within eight minutes,

After 24 hours of exposure the seals had severe con-

junctivitis, swollen nictitating membranes, and evi-

dence of corneal erosions and ulcers. Twenty hours

after the seals had been placed in clean sea water the

eyes showed no signs of irritation. No other effects

of oil immersion were observed in these seals.

In another experiment, three captive ringed seals

immersed in water covered with light crude oil under

conditions similar to an experiment carried out “in the

field”, died within 71 minutes. The field test had

resulted in no mortality, leading the investigators to

surmise that the added stress of captivity was the

principal difference in the second experiment (Geraci

and Smith, 1976) . Extrapolation of these results

suggests that normally sublethal effects might become

lethal with the added stress of disease, parasitic

infection, reproduction, molt, or inadequate food. The

blubber layer of seals is thinnest during the molt.

Haulout during molt may be an important strategy to

avoid cold, and some evidence suggests

skin surface promotes the growth of

cells.

Animals may ingest oil from a spill

that the warm

new epidermal

either direct-

ly or through feeding on contaminated prey. Moore and

Dwyer (1974) have reported that ingested volatile

petroleum fractions of low molecular weight can cause

acute cytotoxicity in many marine organisms. More

subtle organ damage may result from repeated ingestion

of less volatile fractions. Geraci and Smith (1976)

found that ringed seals rapidly absorbed crude oil into

body tissues and fluids, excreting them via the bile

and urine. Harp seals fed 75 ml of crude oil showed

evidence of tissue damage. While the accidental inges-

tion of oil may not be immediately harmful to phocids,

the long-term effects of ingestion of oil-contaminated

food have not yet been studied. Geraci and Smith

(1977) reported “transient” kidney and liver lesions in

ringed seals placed in oil-covered water. They at-

tributed these to the inhalation of volatile hydro-

carbons.

Pups may depend more on their pelage for heat con-

servation than adults because they have little blubber

at birth and a poor surface-area-to-volume ratio. Some

phocid pups have a thick lanugal coat and swim soon

after birth. Otariid pups usually do not swim until

several weeks after birth. Both may be adaptations for

heat conservation until blubber layers are built up.

If so, pup vulnerability to oil-induced hypothermia may

be significantly greater than that of adults.

During their pupping, suckling, and molting peri-

ods pinnipeds are probably most easily disturbed by OCS

development activities. Disturbance by aircraft and

boat traffic may be the most immediate problem. While

little is known of direct effects of oil on pinnipeds,

their position near the top of the food chain makes

them particularly vulnerable to a reduction in numbers

of their prey, which could be much more sensitive to

the direct effects of oil pollution.

10.4 SEA OTTER

The sea otter is the only member of the family

Mustelidae that is exclusively marine. Wild sea otters

have not been observed to enter fresh water (Kenyonj

1972) . The species prefers rocky coasts where inshore

waters are rich in bottom fauna.
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Table 10.7 Identification of prey from the stomachs of
309 sea otters from Amchitka Island (Kenyon, 1969).

Prey item % Volume Minimum frequency
of occurrence

Annelids 1 2

Crustaceans <1 .5

Molluscs 37 16

Echinoderms 11 58

Tunicates <1 4

Fish 50 35

Role as a key species

Considerable evidence from California (Estes and

Palmisano, 1974) and the Aleutian Islands (Palmisano

and Estes, 1977; Simenstad et al., 1978) indicates that

the sea otter is a key species in determining the

structure of nearshore communities. Sea otters control

herbivorous invertebrate populations and indirectly

affect wave exposure and the composition of the rocky

intertidal community (Fig. 10.12). In areas with dense

sea otter populations, sea urchins, limpets, and

chitons are reduced ‘to sparse populations of small

individuals; macroalgae flourish, providing food and

shelter for a variety of organisms, especially crusta-

ceans; wave exposure is reduced, siltation increases,

and overall productivity is high. In contrast, similar

areas with few or no sea otters have dense populations

of large herbivores, macroalgae are severely over-

grazed, bare rocky substrates are exposed to wave

action, and overall productivity is low.

DENSE ~ Low herbivore Reduced wave~ Extensive
Increased~ + ~ Reduction of Reduction

densities little grazed
exposure siltation

(sea urchins)
sessile in the size

marine algal invertebrates 4 of predators

!

beds (barnacles (sea stars
● Increased algal and mussels) and snails)

competition forr

LModerate density 1
of Common Eiders

Abundant Reduction of
# algal drift,

debris, detritus
High density of snail shells

High density
of herbivorous predacious fish

crustaceans 1
(amphipods, Reduction of
isopods, and - hermit crab
mysids) populations

Y +

Abundance of Bald Eagles Abundance of Harbor seals

SEA OTTER
POPULATION

High herbivore
●

~ Sparse Dense populations of
ABSENT

Large predacious
densities (sea * Abundance of

heavily ~ sessile invertebrates ~
urchins) (barnacles and mussels)

sea stars and snail shells
grazed snails

I

marine
algal
beds I~

Abundance of b Sparse populations of Sparse
herbivorous crustaceans ~ populations of Dense hermit

Common Eiders (amphipods, isopods, etc. ) predacious fish crab population
b

J
Bald Eagles absent < Fewer Harbor
or fewer seals

Figure 10.12 Diagram of interactions within nearshore communities with and without sea otter populations (Palmi-
sano and Estes, 1977).

Effects of petroleum development

Sea otters are especially vulnerable to the ef- predicted that mortality among wild oiled sea otters

fects of petroleum development. Because they rely on would be high. However, during the summer of 1979

their dense pelage for insulation, fouling of it by oil several wild sea otters were partially oiled, fitted

may cause severe thermal stress. Laboratory studies with radio collars, and released in Prince William

show that oiling of sea otters has caused death and Sound (Costa and Kooyman, 1979). These animals were
!

severe stress (Kooyman and Costa, 1979). It has been then tracked and observed for several weeks. During
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CHAPTER 11 PETROLEUM

L. Jarvela, OCSEAP

11.1 RELEVANCE

The social,

INDUSTRY DEVELOPMENT

economic, and envirotiental

consequences of OCS oil gas and development cannot be

adequately assessed without information on the scope

and nature of industryts involvement. OCSEAP’s

immediate concerns lie with environmental issues,

principally those affected by

o the locations of offshore platforms,

pipelines, and onshore facilities and the

nature and timing of their development,

o the quantities and

properties of contaminants

various sources,

physico-chemical

anticipated from

o qualitative and quantitative aspects of

environmental disturbance accompanying OCS

exploration and development.

BLM is OCSEAP’s major source of information on

offshore oil and gas development. Other important

sources are the USGS, the petroleum industry, and state

agencies such as the Departments of Community and

Regional Affairs, Environmental Conservation, and

Natural Resources.

The applications of this information to

environmental issues are diverse. Data on types and

locations of structures are used to assess potential

hazards arising from extreme natural events such as

storms and earthquakes. Knowledge of the sources,

types, and quantities of contaminants, together with

bioassay and transport data, permit evaluation of their

effects on organisms at individual, population, and

community levels. The potential for disturbance of the

biota or habitats as a consequence of OCS oil

activities can be predicted when the nature and extent

of the activities are specified.

Initially, the projections may be large ly

speculative, as in the case of NEGOA, where there is no

history of offshore production.

discovered, knowledge of the extent

formulation of development plans

specific projections.

If gas or oil is

of the resource and

will lead to more

11.2 PETROLEUM EXPLORATION AND PRODUCTION IN NEGOA

The presence of numerous onshore oil seeps between

the Copper River Delta and Yakutat stimulated interest

in the petroleum potential of NEGOA in the late 1800’s

and resulted in the discovery of the Katalla field in

1896. Only some 154,000 barrels were produced between

1901 and 1933, when the field was abandoned (USDI,

1976) . Between 1954 and 1963, 25 other onshore

exploratory wells and coreholes were drilled near

Yakutat, Icy Bay, and Yakataga. None had commercial

quantities of petroleum hydrocarbon, and all were

abandoned (Fig. 11.1).

The State of Alaska held six competitive offshore

sales in state waters between Yakutat and the Copper

River between 1960 and 1967 (Table 11.1). Texaco did

the only exploratory drilling about two miles east of

Kayak Island (USDI, 1976), but that well was also

abandoned after drilling to a depth of 3700 m.

NEGOA was the first OCS frontier area in Alaska to

be offered for offshore leasing by the federal

government. The prospect of large quantities of

petroleum appeared good. In April 1976, 24 companies

Table 11.1 State of Alaska competitive offshore lease
sales in NEGOA (USDI, 1976).

Map reference Sale no. Sale date Areas offered Areas leased Percent Bonus Paid
(thousands of (thousands of leased ($ thousand)
hectares) hectares)

Yakutat/
Controller Bay 3 12/07/60 5.0 2.1 44 6

Controller Bay/
Copper River 5 5/23/61 9.5 9.5 100 66

Controller Bay/
Icy Bay 6 8/o f+/61 5.4 5.4 100 111

Yakutat Bay/
Icy Bay 7 12/19/61 20.4 15.9 78 269

Middleton Island 16 7/19/66 12.5 11.0 88 4,657

Controller Bay 18 1/24/67  > 1.9 Jg ~

Totals 56.9 45.8 80 4,918

Source: Alaska Dept. Nat. Res. 1975

nominated 1,350 tracts covering approximately 2.9

million hectares. A total of 189 tracts covering

408,134 hectares was offered at Sale 39. Seventy-six

high bids, totaling $571.9 million, were accepted by

the Department of Interior (Plamondon, 1976). Figure

11.2 shows the tracts awarded to the high bidders.

One stratigraphic (C. O. S. T.) well and 11

exploratory wells have been drilled thus far in the

Sale 39 area. The consortium-sponsored C.O.S.T.  well

was abandoned after it reached a depth of 1,525 m

because of difficulty in setting casings and because of

intense fall storms (Atkinson, 1975). Shell, Atlantic

Richfield, Exxon, Gulf , and Texaco drilled the

exploratory wells on high bid tracts between January

1977 and July 1978 (Table 11.2). Although Texaco

reportedly found gas at its Icy Bay test well, that

well and the other 10 drilled were not commercially

exploitable. Further drilling by industry on Sale 39

tracts is unlikely. ARGO’S attempt to relinquish some

of its Sale 39 tracts is an example of industry’s

pessimism on the subject (Anon., 1979a).
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these, USDI selected 350 for intensive environmental

study (Anon. , 1978c). The tracts form a single area

of about 800,000 hectares in the eastern end of the

call area. By June 1980 140 tracts had been eliminated

at the request of state and Yakutat officials. The

remaining 210 tracts are shown in Fig. 11.2.

In anticipation of the sale, ARCO attempted to

form a consortium to drill a stratigraphic  well in the

Yakutat Shelf region (Anon., 1978d). Although the

proposed stratigraphic test was abandoned because of

lack of support by other companies, some geophysical

surveys were being made in the area in July 1980

(Anon., 1979c, 1980).

11.3 LOCATION, NATURE, AND TIMING OF DEVELOPMENT OF

PLATFORMS, PIPELINES, AND SHORE FACILITIES

Ocs petroleum extraction operations include

reconnaissance, exploration, development, production,

and shutdown. The character, timing, and duration of

activities during the various phases depend on market

conditions, resource potential and location, proximity

of logistical support and shore facilities,

environmental conditions, federal, state, and local

policies, and availability of suitable land and harbor

facilities. Often the phases overlap. For example,

exploration drilling may be going on while a production

platform is being installed.

Reconnaissance surveys normally precede a lease

sale. The information obtained is necessary to

evaluate the potential of an area for petroleum

hydrocarbon production and to guide company bidding for

tracts. Shipboard geophysical surveys and C.O.S.T.

wells are employed to obtain data on sedimentary

structures.

After a sale, successful bidders drill exploratory

wells using mobile rigs; these may be semisubmersibles,

jack-ups, or drilling ships. Supply vessels, aircraft,

and shoreside service bases are needed to supply the

rigs with drilling materials and to transfer personnel.

The amount and duration of exploration depends on

resource potential, the depth of the structures being

drilled, and water depth. In the event of a major

discovery , additional exploratory wells are required to

delineate the extent of the resource.

When the economic potential of the field has been

evaluated and a plan for production has been outlined,

the development phase begins. Development includes the

design, fabrication, and installation of production

platforms, the construction of onshore structures , and

installation of gas or oil collection systems. It is

the phase that uses the most manpower. The scope and

character of development depends on the amount of oil

or gas present, the location of the fields,

147° 146° 145° 144° 143° 142° 141° 140° 139° 138°

I = Tracts proposed forsale55
\ f I

I ‘zoo”””+ II 1 \ \ I
147° 146° 145° 144° 143” 142° 141” 14(-J” 139”

Figure 11.2 Distribution of tracts sold in OCS Sale No. 39 and tracts selected for OCS Sale No. 55 (USDI, 1976,
1980b) .
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. . . . . . . . . . . . A..

Semisubmersible drilling rigs were employed during

Sale 39 drilling. Table 11.3 lists them and some of

their characteristics. As the severe environmental

Table 11.3 Characteristics of semisubmersible drill
rigs used in NEGOA (Anon., 1975; 1976a, 1976b, 1976c).

Characteristics Ocean - Sedco 706 Alaskan Star— .

Dimensions (m)

Depth capabilities (m)
Water
Drilling

Mooring system

Sea state capabilities

Drilling
Survival

Towinglpropulsion
system

Storage capacity
Liquid mud

Bulk mud & cement
Sacked mud
Fuel
Potable water
Drill water

Quarters

cost

120x80x79

900
7 6 0 0

12 20,000 kg anchors
8. 3-cm chain & cable
WI 3.2-cm MM breaking
strength

Self-propelled;
four 3,500 hp motors

2,450 bbls

625 m2

20,000 bbls
22.000 bbls
48;800 bbls
20,500 bbls

100 men

$50 million

90X75X40

Self-propelled
four 2,000 hp
thrusters

96 men

$46 million

84x66x33

450
9100

8 14,000 kg
anchors;
1200 m 7.6-cm
chain

30 m

2,058 bbls

350 m3

6,000
10,136 bbls
1,227 bbls

12,230 bbls

100 men

.$48.5 million

conditions on the NJ?MJA snelf largely exclude other

types of mobile rigs such as jack-ups and drill-ships,

semisubmersibles probably will also be used off

Yakutat. The number of rigs depends on activities in

other OCS areas and the industry’s prediction of

exploitable quantities of oil or gas in the sale area.

The Gulf of Alaska recently ranked 17th among 22 OCS

areas in the U.S. in resource potential (USDI, 1979).

Probably no more than four exploratory rigs will be

present in the Sale 55 area at a given time.

Exploration will probably begin within a year

after Sale 55 and last about two years if no discovery

occurs. In the event of a discovery, exploration

activity would continue to delineate the size, shape,

and depth of the reservoir. At the peak of activity

four exploratory rigs could be in use.

The number of boats needed to supply exploratory

rigs depends on the distance between the service base

and the rig, rate of use of drilling material, and

vessel speeds. About 10 trips per month per rig are

required to transfer drill pipe, fresh water, muds, and

other materials (Kramer et al., 1978). During the peak

of Sale 39 exploratory activity, 13 supply vessels used

the Seward service base, although no more than six were

in port at a given time (Alaska Consultants, 1979).

The typical supply vessel used for offshore operations

is 50 to 65 m long and has a cruising speed of 14 to 17

kts and a range of 320 to 480 km (Kramer et al., 1978).

Fewer vessels will be required for Sale 55

exploration because the sale area is closer to the

service base and because fewer exploratory rigs are

predicted. The farthest reaches of the nominated area

are within 145 km of Yakutat. If four rigs are present

during peak activity, 40 vessel trips per month are

predicted. The vessels could reach the most distant

part of the sale area in about six hours as compared,

for example, to the 12 to 14 hours required to reach

the Ocean Ranger from Seward when it was drilling off

Yakataga. No more than eight supply vessels will be

needed.

Helicopters are used to transport

some supplies between drilling rigs and

Sale 39 exploratory activities, one or

personnel and

shore. During

two helicopter

trips to each rig were made from Yakutat each day

(Kramer et al., 1978). Large helicopters are used

(e.g., the 10-place Bell 222) in order to reduce the

frequency of flights and because the larger helicopters

are safer in inclement weather. The number of

helicopter flights from the Yakutat Airport during Sale

55 exploratory drilling probably

that during Sale 39 drilling.

will be comparable to
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11.4.4 Resource estimates

Several estimates of the amounts of oil and

natural gas in the Gulf of Alaska are available. For

Sale 39, the USDI’S 95 and 5 percent probability

estimates were 100 million and 2.8 billion barrels of

oil and 8.5 billion and 25 million m3 of gas,

respectively (USDI, 1976). The USGS estimated that the

area of call for Sale 55 contains up to 4.4 billion

barrels of oil and 37 billion m3 of gas (Anon., 1978b).

More recently, their 50 percent probability estimates
3

were 0.5 billion barrels of oil and 5.7 billion m of

gas (Anon., 1978b). USDI (1980b), however, estimates

that the undiscovered reserves off Yakutat may be as

much as 800 million barrels of oil and 6.4 billion m3

of gas.

11.4.5 Development possibilities

The moderate (1.25 billion barrels) and high (2.2

billion barrels) find scenarios developed by Kramer et

al. (1978) for NEGOA illustrate three possible courses

of development following a commercial discovery. Table

11.4 summarizes the development needs arising from the

three options. As pipelines are very expensive to

install, they will probably be used only in the case of

an undispersed moderate find or of a high find.

Installation of pipelines will necessitate expanding

service base pipe storage facilities; lay and bury

barges will be needed to install the pipe. Shoreside

oil storage and loading facilities and possibly

treatment facilities will also be needed. All

shoreside facilities will probably be located on or

near Monti Bay.

The exact timing of development activities cannot

be predicted. In the Scottish North Sea, the interval

Table 11.4 Development needs (Kramer et al., 1978).

Development Moderate find High find
needs No pipeline Pipeline

Supply boat
berths 3 5 10

Supply boats .8 w8-10 .25-36
hectares hectares hectares

Oil terminal Offshore 1 (small) l(650k bbl/day)
loading

Pipelines None 1(120-160km) 1(190-240 km)

Lay barge None 1 1-2

Production 4 4 7
platforms

LNG plant None None 1

between discovery of a field and production ranged from

three to seven years for nine fields discovered between

1969 and 1974, the average being 5.4 years (Busemann,

1978]. The rapid production was possible partly

because British government policy allowed production to

begin before development drilling and pipelaying were

completed. Differing U.S. federal and state government

policies and the remoteness from platform fabrication

yards suggest that production will be slower in NEGOA.

If a commercial discovery is made immediately after

exploration begins, a minimum timetable can be set

forth for construction and operation of the industrial

facilities (Table 11.5). Service bases would be in

operation before the sale, but they might have to be

expanded to meet the demands for additional supply boat

berthing and pipe storage during the period of platform

installation, pipelaying, and construction of shore

facilities. Other facilities would be designed and

constructed so that production could begin eight or

more years after the lease sale. The period of about

four to eight years after a commercial discovery would

be characterized by intense local activity, including

the installation of platforms, laying of pipe, and

construction of treatment facilities and oil terminals.

This activity would decrease sharply as soon as

production began+

Table 11.5 Minimum
tivities (Kramer et

time frame for facilities and ac-
al., 1978) .

Years from sale
Industrial
facility Planning Construction Operation

Service base -2 to -1 -1 to o 0 to 47

Production l t o 2 2t07 7 to 47

Treatment 3 t 0 4 4 t 0 8 8 to 47
facility

Pipelines 3 t 0 4 4 t 0 8 8 to 47

Oil terminal 3 t 0 4 4 t 0 8 8 to 47

LNG plant 5 t 0 7 7t09 9 to 47
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11.4.10 Oil terminals

At oil terminals crude oil is stored and loaded

onto tankers for shipment to refineries. If oil is to

be piped ashore, an oil terminal will probably be

constructed near Monti Bay. It probably will consist

of conventional above-ground steel tanks surrounded by

earth dikes. The number and/or size of the tanks will

be determined by production rates (see Table 11.6 for

representative storage capacities). The placement of

tanks is dictated by topography, greater acreage being

required in sloping areas than on flat terrain. From 7

to 88 hectares would be required for a NEGOA oil

terminal, based on a maximum terminal throughput of

650,000 bbl per day (Kramer et al., 1978).

Table 11.6 Hypothetical crude oil storage and transport
requirements for various production rates (Kramer et
al., 1978).

Crude oil production (1000’s bbl/day)
250 450 650

10-day storage 2.5 4.5 6.5
capacity

(million barrels)

Tanker arrivals
Sma11 every 2 days daily every 16 hrs

(60,000 dwt)
vessel

Medium twice a wk every 2 days every 36 hrs
(120,000 dwt)
vessel

Note: 1 dwt approx. equal to 7 bbls

(To put the above production rates in perspective, the
flow of Prudhoe Bay crude by the Trans-Alaska Oil Pipe-
line was about 1.16 million barrels per day in May 1978
(Anon., 1978a).

11.4.11 Liquefied natural gas plants

Natural gas may occur with oil (associated gas) or

alone (dry gas). The gas may be flared, reinfected,

processed for local use, transported by pipeline, or

liquefied for shipment by ship. The lack of a large

market near Yakutat and regulations limiting flaring

suggest that any gas found there would be reinfected or

liquefied for shipment elsewhere. Because of the large

capital investment needed, an LNG plant would be

constructed only in the event of a major find.

Reserves of at least 42 to 56 billion m3 would be

required to justify a plant (Kramer et al., 1978).

The basic elements of an LNG plant consist of a

liquefaction train, storage tanks, marine loading

facility, and support structures (Kramer et al., 1978).

The design capacity of such a plant is based on gas

production rates over the anticipated lifetime of the

field. The Phillips Facility at Nikiski produces about

5.6 million m3 per day, while the proposed Pacific

Alaska LNG Company and El Paso Natural Gas Company

facilities have design capacities of 11 million and 87

million m 3 per day, respectively (Kramer et al., 1978).

The site requirements for the three facilities are

about 10, 24, and 200 hectares, respectively. The

Yak-Tat-Kwaan,  Inc. reserved 160 hectares for an LNG

plant on the south side of Monti Bay in anticipation of

a commercial gas find on Sale 39 leases; that site

presumably will be used if gas is discovered on the

Yakutat Shelf.

11.4.12 Loading oil and gas

Tankers can be loaded at

at an offshore loading dock

single buoy mooring system

a shoreside fixed pier,

(sea island), or at a

(SBM) . The latter two

systems require underwater pipelines from the storage

facility. SBM’S are used for offshore oil loading.

Shoreside piers are the most commonly used for loading.

A sea island is used at the Drift River terminal in

Cook Inlet because of shallow water and large tides.

SBM’S are lower in cost and relatively insensitive to

earthquakes and heavy seas (Kramer et al., 1978; USDI,

1976) . Deep water close to shore, excellent shelter

under all weather conditions, and other siting factors

(Kramer et al. , 1978) indicate that either an SBM or

shoreside loading facility could be used in Monti Bay.

11.4.13 Crude oil and LNG carriers

Tankers used to transport oil from the Gulf of

Alaska to refineries will probably range from 40,000 to

165,000 deadweight tons (dwt) (Kramer et al., 1978). A

165,000-dwt tanker is approximately 300 m long and has

a draft of about 18 m, thus requiring deep water and

considerable room for maneuvering. A 165,000-dwt LNG

carrier is about 320 m long; however, because of the

lighter weight of its cargo, it draws less water--about

12 m.

The frequency of visits of LNG or crude oil

carriers to marine terminals depends on production

rates and ship size. Some representative values of

crude oil loading frequency are given in Table 11.6.

For LNG, Kramer et al. (1978) give a range of from one

ship visit per day to one visit every eight to nine

days for three operational or proposed LNG plants.
.

Since LNG production, in contrast to crude oil

production, can be decreased or stopped in the event of

shipping delays, less storage capacity is required.
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prevalent continuous discharge rates while the latter

is characteristic of maximum discharge conditions. No

significant changes in benthic populations or

accumulations of mud or cuttings in the vicinity of the

rig were found (Dames and Moore, 1978). Strong tidal

currents (up to 2 kts) near the rig rapidly dispersed

the discharged effluent.

Current meters off Icy Bay show that currents on

the Yakutat Shelf average about 15 cm/sec and are

directed westward. They vary widely both in mean speed

and direction, especially during the summer. Speeds in

excess of 2 kts sometimes occur (Muench et al., 1978).

Although the currents in the Sale 55 area are probably

similar to those found near the Ocean Ranger and would

be sufficient to dilute drilling fluids, confirmation

at the platform site will be required.

11.5.3 Drill cuttings

About 0.1 m3 of cuttings is produced for every me-

ter of well drilled (USDI, 1979). Thus, for a 4,00@m

well (typical of those drilled during Sale 39) some

370 m3 of cuttings would be produced. After separation

from muds, the cuttings are diluted with sea water and

discharged. The dispersal of cuttings after disposal

depends on particle size composition, density, water

depth, current speed, and turbulence. These will

affect sinking rates and horizontal distances to which

an individual particle may be carried.

As cuttings from the Ocean Ranger C.O.S.T. well in

Lower Cook Inlet had a specific gravity of 2.6 and size

range of 0.,1 to 10 mm (Dames and Moore, 1978), they

settled out rapidly and separated from the finer,

lighter drilling muds. In the high-energy environment

at the C.O.S.T.  well site, drill cuttings were rapidly

dispersed. The percentage of cuttings larger than 0.85

mm found at any sampling site was less than 3 percent

by sample weight (Dames and Moore, 1978). Cuttings

were incorporated into the bottom sediments to about 9

cm. Simulations indicated that currents will carry 0.1

to 0.2 mm cuttings up to 5.6 km from the drill site 10

percent of the time (Dames and Moore, 1978). When

currents are weaker, much greater accumulations of

drill cuttings can be anticipated around the base of a

drilling platform. At production platforms, production

and localized accumulation of drill cuttings would be

higher due to the drilling of numerous wells from a

single platform.

11.5.4 Formation waters

Some water accompanies each barrel of crude oil

produced. For example, in the Beaufort Sea, BLM

estimates that from 0.5 to 5 barrels of formation water

will be produced per barrel of oil (USDI, 1979). The

water may be separated from the oil at the production

platform or at a shoreside treatment plant. In the

former case, formation water may be reinfected,

injected into disposal wells, or discharged into the

sea. The latter alternative raises concerns about

possible biological damage. Formation waters may be

anoxic, highly saline, and may contain dissolved

aromatic hydrocarbons, heavy metals and hydrogen

sulfide. Any of the above conditions could be

detrimental to the biota. Formation waters may be

diluted with seawater to reduce contaminant

concentrations to acceptable levels before discharge.

For the Beaufort sale area, at oil concentrations

of 30 ppm, the discharge of one-half of the produced

formation waters could result in the introduction of up

to 1,000 or 10,000 barrels of oil annually into the

environment (based on the 0.5:1 and 5:1 formation

water:oil ratios noted above) (USDI, 1979). These

values represent about 25 and 70 percent, respectively,

of the estimated maximum volume of crude oil released

annually from all Beaufort Sea field sources. Similar

calculations for NEGOA based on extractable reserves of

0.5 billion barrels and a 30-year field life produce

maximum annual rates of 250 and 2,500 barrels of oil

discharged with formation waters.

11.5.5 Accidental oil spills

Oil spills from platforms can be either oper-

ational or phenomenological. The former can be

predicted with confidence, based on abundant data from

OCS oil operations elsewhere. Spills caused by natural

phenomena, such as great storms and earthquakes, are

more problematical. First, since OCS oil activities in

hostile northern environments are of recent origin, few

data are available on spills there. Second, great

storms and earthquakes occur so seldom that there is

little information on which to base predictions.

Accidents resulting in oil spills can be caused by

blowouts during drilling, platform fires, equipment ,

failures, and operator’ errors. Representative

statistics on the frequencies of operational spills are

presented in Table 11.8. The data are based mainly on

operations in the Gulf of Mexico and may not be

applicable to NEGOA due to improvements in technology,

differing operating conditions, and other factors.

Annual maximum oil spillage from platform fires,

overflow, malfunction or rupture of equipment, and

minor spills (all sources) during peak production from

Sale 39 tracts was estimated at 6,450 barrels per year

(USDI, 1976). In addition one blowout, which would

release 2,100 barrels of oil sometime during the

production period of the lease area, was projected.

Development 253



9IJnLG
EdffTBWGU

T LG

pjot'on

ltOLW

bsIJiib[f9wO8\f
noiiboiq10\0OO.O
iiDLJboIqlo0\°iOOOO.O

miozaii-OO
(i9162e.r

fl1Xtfl
yis]seOS

iiJ:im

cirtoIis[q10a1fnhiiaa.IIIdsT Ivxsztnsv5Iqiuowoldgnimixio
.(VQIIUaU)

oai-OO.
SE2.I

t
916a0.1
fIIgISffl

I
()

0
0

I-
.!

V
)

0
0

C
C

01C
uC

C
C

0 i-
h n 0 w

u

P.

x- F 0 .
* m m

m
k ?? (-D

. 0
$ r (7

w

i-t 1+ m co o
CL c rD

I
L1

l+
!

rt o
u’ m

w h rn m
l-i

id
w 0

b.

1=
CA 0

(+ ?
- 0 m CD

I-
t

i-l) 6 0

k. (D m .
L.

0 l-
h

u)

!= u.
u

L u

!-
l.

o .
0 . w w o . N o 0 L m

0
0

,
.

0 0
z

C
O
N

u
.

n

0
0

0 .
. 

.
l-l

0
0

0
0

.
 
.

. 
.

A
*

P. W
o- != M

0 i-
h

u
.

-
J

is m
. m

m (D
et

.
ti.

o HI
0- m

m 0 . 0 0 0

* 0 m
P. P

. m
P. D

P. rn
m 8 m n : n!

0 *
G%

e l-
.

P. *
.

“
.

0 s
m m

0 w
0 l-

h 0 w w

m 92 w I-D
.

0 w 1-
o- (D

$ (-
t != w m C/l

.
.

W
I
W
I

P m P ?i m

.
u m m H?

F. P v m a

Lo 4 co
.

0 F. I-
J

.
.

!n G P
. !-) Pi
’ ‘z

~ U3 (D C
L

o- G i+
1+ ?- I-D

ill (-
t

P. o ~

.
(-

t
.

b m Lo
m c o- EJ e w.

0 HI
.

l-
h

Ii
(-

t
~ rt

H-
I (-D m f-t

* D- m
m 9) UY

0
0 l-

h
P. m

a .
0 l-h



(1976) recommended special attention to the selection

and design of pipeline routes. This will probably be

true for the Sale 55 area also.

11.5.7 Shore facilities

Contaminants at shore facilities may occur as

emissions, effluents, and solid wastes. Sewage and

refuse would probably be disposed of by the

municipality.

The processing, storage, and loading of petroleum

results in the release of hydrocarbon vapors and

spillage; 3173kg of hydrocarbons typically are lost

per thousand m of crude oil transferred from tank to

tanker (Kramer et al., 1978). For a 65,000 dwt tanker

this would amount to about 25 metric tons of

hydrocarbons lost through evaporation. Evaporation

losses from tanks dur~g storage are about 18 kg and

3.4 kg per thousand m stored for fixed and floating

roof tanks, respectively (Kramer et al., 1978). Vapor

losses during tank filling may be 87 kg per thousand m3

(Kramer et al., 1978).

Emissions from treatment plants are generally

within allowable levels, according to Kramer et al.

(1978) ; treatment plants also generate potentially

harmful liquid and solid wastes. Formation waters

separated from crude oil must be disposed of; existing

regulations permit a maximum daily average of 72 mg of

oil per liter of water discharged (Kramer et al.,

1978) . Varying quantities of sands and other solids

also are separated from the wellstream and are disposed

of in landfills. Designated landfills are used for

solid wastes which contain significant quantities of

oil (Kramer et al,, 1978).

Inevitably, some crude oil is spilled during

transferring or loading. The spillage rate has been

low in recent years. During a nine-year period,

spillage accounted for only 0.0011 percent of all oil

moved at the Milford Haven terminal (Brummage, 1973).

This information suggests that for a projected annual

production of 16.7 million barrels from the Sale 55

Area, about 184 barrels might be spilled per year. The

reported spillage at the new Valdez terminal is even

lower: 0.5 barrels per million barrels shipped (Purdy

et al., 1979) , identical with the current standard

estimate for oil pollution from discharges and terminal

operations in port areas given by Bright (1979). If

this rate were achieved in the Sale 55 Area terminal

operations, the annual spillage from the projected

production would be only about eight barrels.

A source of chronic contamination of waters near

oil terminals is the effluent from ballast water

treatment. Rather than discharging ballast water at

sea as was the past practice, tankers now discharge

ballast water at oil terminals (e.g., Valdez). As

these waters may contain considerable quantities of

hydrocarbons, they must be treated before release. The

treatment may include gravity separation, flocculation,

and air flotation, followed by dilution to reduce

contaminant concentrations in the final effluent to

allowable levels. The final effluent at the Valdez

facility contains about 11 mg carbon per liter; it

consists of 48 percent volatile aromatic hydrocarbons,

36 percent nonvolatile water-soluble organics, and 16

percent suspended organic matter (Lysyj et al., 1979).

Although concentrations of hydrocarbons may be low, the

total amount discharged may be high due to the large

volume of ballast water treated. At the Valdez

facility, for example, about 10 million gallons of

ballast waters are discharged per day with about 80

gallons of aromatic hydrocarbons and 45 gallons of

dissolved organics (Lysyj et al., 1979). The

implication is that in the abserice of adequate dilution

of the effluent by tidal mixing and currents, localized

accumulations of hydrocarbons may occur.

11.5.8 Tankers

The two major contaminants from tankers are stack

emissions and spilled oil resulting from accidents or

structural failures. (Ballast water and spillage

during oil loading were considered earlier.) Tanker

emissions are a major issue in areas having air quality

problems, such as Southern California. The Santa

Barbara County Air Pollution Control District estimated

that, at a crude oil production rate of 200,000 barrels

per day, tanker loadings of processed oil would add

over 1,800 metric tons of hydrocarbons per year to the

air basin (Chorich, 1978). A 150,000-dwt  tanker emits

from 2.9 to 3.6 metric tons of sulfur dioxide per day

while burning heavy residual diesel oils; the amount of

discharge can be reduced by burning low-sulfur fuel

while in port (Kramer et al., 1978).

The worldwide accident rate for oil tankers is 4.4

accidents per 1,000 voyages (Bright, 1979). About 20

percent of the accidents result in oil spills, but 90

percent of the spills are of less than 25 barrels.

Thus oil spills from tankers are rare, most spills are

small, and most of the spillage results from a few

large spills. A consequence of this is that “average”

spill statistics are not very meaningful. Worldwide

data indicate a two-percent probability that a

60,000-barrel or larger spill will occur within 50

miles of land because of a tanker casualty (Bright,

1979). The CEQ reported a tanker spillage rate of

0.016 percent of oil transported, including operational

spillage (USDI, 1976). That rate and an annua 1

production of 16,700,000 barrels of crude oil in the
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11.6.3 Direct disturbance

Human activities often cause changes in the

behavior of animals. These may include attraction or

repulsion, alteration of feeding habits, and

disturbance of breeding activities. Human activities

that are detrimental to some species may benefit

others. Furthermore, the location and time of the

disturbance must be considered as well as the behavior

of individual species, species interactions, and the

nature of the disturbing agent. There are many

potential sources of disturbance from OCS oil and gas

activities; among the most important in NEGOA are

aircraft and boat traffic, the physical presence of

structures, and increased density of human population.

Low-flying aircraft can cause high mortality of

young at seal rookeries and seabird colonies, and

possible desertion by nesting waterfowl (Hunt, 1976;

OCSEAP , 1978) . Disturbance of harbor seals is

especially critical during the period of mother-pup

bond formation. At seabird colonies the highest

mortality probably occurs when adults flushed by

aircraft leave young and eggs unprotected from

predators. Similar damage occurs when vessels come

close to bird or mammal rookeries. In addition, vessel

traffic may cause marine mammals to be temporarily

displaced from or to desert areas traditionally used

for foraging, migration, and other activities. The

usual way of minimizing aircraft or vessel disturbances

of animals is to regulate traffic patterns and periods

that the patterns must be used.

Figure 11.5 Proposed development, Monti Bay (Kramer
et al., 1978).

Shoreside and offshore structures, utility

corridors, and the activities associated with them may

repel or attract animals. They may be beneficial to

some species (e.g., scavengers such as gulls and crows)

but fatal to others (e.g., migrating birds attracted to

lights). Death may occur through collisions or

entrapment. Other possible effects are restructuring

of biological communities, increased vulnerability of

organisms to predation (e.g., by commensal species such

as foxes or gulls) , alteration of feeding patterns, and

avoidance of the area due to increased noise levels.

If shoreside development is concentrated near Monti

Bay, the disturbing effects of structures in the Sale

55 Area would be confined to relatively small areas.

Recreational activity is a potentially large

source of disturbance of animals. Krameret al. (1978)

estimated that in the case of a bonanza oil and gas

discovery in NEGOA, up to 10,000 people could be

directly employed. Estimated employment in the no-find

case was about 700. As noted earlier, the largest

number would be present during construction of oil

terminals and other facilities, but only 40 percent of

that number would be needed during production.

If persons indirectly employed because of OCS

development and dependents of both groups are also

considered, it becomes apparent that recreation in the

Yakutat region resulting from development could exert

considerable pressure on fish and wildlife resources.

Total additional population increases in NEGOA could

range from 1,366 to 24,924 people (no-find and bonanza

cases, respectively) (Kramer et al., 1978). Demand

for consumptive and nonconsumptive uses of fish and

wildlife (e.g., hunting, fishing, birdwatching,

photography) could increase by orders of magnitude,

producing significant pressure on local animal

resources and probably requiring much more restricted

use than is currently allowed.

11.7 EVALUATION OF DATA

The available data are limited and come mostly

from other areas. Technical aspects of present

exploration and production systems are known. However,

rapidly evolving technology might result in the use of

yet untried equipment or techniques. Furthermore, in

the absence of a discovery or development plan, one can

only speculate about the geographic disposition and

characteristics of the system that might be employed to

extract, treat, store, and load crude oil or LNG.

The only available information on the composition

of petroleum in NEGOA is from oil seeps and oil from

the Katalla Field, which could differ markedly from

that found near Yakutat. Speculations about quantities

of contaminants that might be released from various

sources are based mainly on data from less hostile

environments and may not reflect currently achievable

standards. Data from North Sea oil fields are probably

most similar to those expected in NKGOA. There

few, if any, precedents from which to evaluate

probability of earthquake-caused platform collapses

oil spills from deepwater production platforms.

are

the

and

The environmental disturbances likely to result

from OCS activities can be predicted. Some activities,

such as ship and aircraft traffic, can be controlled

through stipulations. Other activities will vary

according to the character of development and locale,

and their effects cannot be predicted with certainty

until development plans become available.
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CHAPTER 12 ENVIRONMENTAL HIGHLIGHTS AND ISSUES OF THE

NEGOA REGION

L. Jarvela,  OCSEAP

12.1 INTRODUCTION

The following pages give a description of the

dominant physical and biological characteristics of

NEGOA, including unique environments, key species and

their habitats, natural hazards to OCS oil and gas

activities, and information gaps. Some issues

pertinent to the forthcoming Sale 55 are then

considered in light of the above and possible

development activities.

12.2 PHYSICAL SETTING

Physiography has a dominant influence on

biological, physical, and man-induced interactions in

the environment. Much of the following description of

the physiography of NEGOA is drawn from regional

profiles prepared for the State of Alaska by AEIDC

(Selkregg, 1974). NEGOA abuts one of the most rugged

and spectacular coasts in the world. Spanning an arc

of roughly 1,000 km from Gore Point on the Kenai

Peninsula eastward to Cape Spencer near the

southeastern Alaska Panhandlej NEGOA is ringed by the

high coastal Fairweather, St. Elias, and Chugach

ranges. Many peaks higher than 4,000 m, topped by Mt.

St. Elias at about 5,500 m, rise close behind the

narrow (1 to 40 km wide) coastal plain between Icy

Point and the western edge of the Copper River Delta.

The coastline here is, for the most part, unprotected

from oceanic storms and offers little shelter for

vessels. Yakutat, Lituya, and Icy Bays are the

principal embayments, the others being shallow river

estuaries. West of the Copper River Delta,

Hinchinbrook and Montague Islands form the seaward

boundaries of Prince William Sound, a complex of

islands and fiords. The waters of the Sound are

relatively protected, as only a few passages--the

largest being Hinchinbrook Entrance and Montague

Strait--connect the Sound with the Gulf of Alaska. The

coastline of the Kenai Peninsula, to the west of

Montague Island, is indented by numerous fiords and

dominated by steep mountains.

Compared with the broad continental shelves of the

Bering and Beaufort Seas, the shelf in lJ13GOA is narrow.

It is about 100 km across near the Fairweather Ground,

but only 10 km wide off Bering Glacier. West of Kayak

Island, an elongated island that projects offshore just

west of Cape Suckling, the shelf again becomes 80 to

100 km wide. The shelf is dissected by numerous sea

valleys. The most prominent include those off the

Alsek River, Yakutat Bay, Bering Glacier, and

Hinchinbrook Entrance. The major topographic highs on

the shelf in NEGOA include the Fairweather Ground, off

Cape Fairweather; Tarr Bank, south of Hinchinbrook

Entrance; and Middleton Platform, from which Middleton

Island rises. The island is the only major emergent

feature lying a considerable distance offshore in

NEGOA .

The climate of NEGOA is maritime. The cool

summers and mild winters are caused by the moderating

influence of the counterclockwise-flowing Alaska

Current. Ice forms only in protected inshore waters.

Frequent storm systems from the western Pacific move

eastward, ‘encounter the high coastal mountains and

stagnate, causing much precipitation. Precipitation

occurs throughout the year, ranging from 147 cm

(annually) at Middleton Island to 460 cm at Latouche

(Brewer et al., 1977). During winter and at higher

elevations during much of the year, considerable

precipitation occurs as snow. The annual average is

5.8 m at Yakutat and perhaps 20 m in the St. Elias

range. Coastal temperatures vary little, ranging from

mean annual maxima of 7-8°C in summer to minima of

O-3°C in winter. Farther offshore at Middleton Island,

summer temperatures are warmer, and mean annual maxima

reach 17.6°C.

The copious precipitation feeds icefields,

piedmont glaciers, and valley glaciers that are among

the largest in the world (e.g., the huge Bering and

Malaspina  Glaciers between Yakutat and Kayak Island).

Some of the glaciers reach tidewater. Streams that

enter NEGOA are typically short and steep; they carry

large sediment loads. Many are braided, as is typical

of glacial outwash streams, and along the eastern Gulf

coast their estuaries are usually fronted by barrier

spits. The Alsek and Copper Rivers are the only

streams that penetrate the coastal ranges and drain

watersheds of the interior.

12.3 DEMOGRAPHY

The human population of NEGOA consists of only a

few thousand people. Few live on the outer coast.

Yakutat is the largest coastal village and had a popu-

lation of 405 people in 1977 (Alaska Consultants,

1979). Most of the inhabitants live in the Prince

William Sound communities of Whittier, Cordova, and

Valdez, and in the Kenai Peninsula community of Seward.

The populations of those communities in 1970 were 130,

1,164, 1,005, and 1,587, respectively (Selkregg, 1974).

In 1978 the population of Cordova had grown to 3,220,

while the population of Seward has declined to 1,187

(Bennett et al., 1979).
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extensive. The major repositories of the sediments

carried westward on the shelf are sea valleys and other

depressions such as Kayak Trough and Prince William

Sound. Rapid submarine accumulation of sediment also

occurs in numerous fiords and fiord embayments.

Rapid erosion and accretion of coastal beaches are

common in NEGOA. The retreat of the glaciers in the

region with the consequent reduction in sedimentation

has caused widespread coastal erosion, exemplified by

the Malaspina Foreland and Yakataga areas. In some

areas sediments are insufficient to replace land eroded

by the high surf common in the gulf. Instead of gently

sloping beaches backed by low foreshores, beaches in

these areas are backed by wavecut bluffs, often with

large accumulations of trees eroded out of the bluffs.

Sediments are being deposited along a small

proportion of the coastline, most notably in the Copper

River Delta. The most striking example of rapid

deposition is at Point Riou in Icy Bay. Since 1904 the

point has grown 6.6 km at the expense of the Malaspina

Foreland, which is retreating at 37 m/yr (Molnia,

1977) . Although in the short term, coastal erosion is

more prevalent than deposition along the NEGOA coast,

in a longer geological time period even in erosional

areas the coastal plain is accreting due to episodic

uplifts (Ruby, 1977).

Rapid sedimentation is probably the major cause of

slope instability on the continental shelf in NEGOA

(see Fig. 2.17). The high rate of sedimentation and

high water content of the sediment results in under-

consolidation. Slumping is not confined to steep

slopes. Slumps on slopes of less than one degree have

been reported (Molnia et al., 1977; Carlson et al.,

1978) . Major slump features have been observed off the

Copper River Delta, in Kayak Trough, and seaward of Icy

Bay. Numerous areas which are likely to slump have

also been identified. Mass movement of sediments may

be initiated by hydrostatic loading resulting from

storm waves, but earthquakes are probably the principal

cause. The amount of material set in motion can be

large. Molnia et al. (1977) estimated the Kayak Trough

slump at 5.9 km3; this slump is believed to have

occurred during the past 70 years (see Chapter 3),

Another cause of sediment instability in NEGOA is

gas-charging. The gas-charged sediments found thus far

appear to be the result of decomposition of buried

organic matter rather than seepage from petroleum

reservoirs.

Earthquake activity and glaciation in NEGOA are

also the cause of tsunamis and glacial outburst floods.

The major cause of death in the 1964 Prince William

Sound earthquake was the tsunamis generated by the

quake (Selkregg, 1974). In addition to tsunamis

resulting from tectonism, large waves and seiches have

been caused by landslides and icefalls into confined

bodies of water, e.g., the 1958 Lituya Bay and 1845

Yakutat Bay waves, the latter of which caused 100

deaths. Outburst floods have occurred or could occur

at numerous locations around the gulf. Cannon (1976)

describes a large outburst flood from Harlequin Lake

east of Yakutat. Berg Lake, formed by an ice dam from

Bering Glacier, could cause a major flood with peak

flows over 30,000 m3/s, should the dam burst (Carlson,

1977). That peak flow rate is roughly ten times that

of the Copper River during peak runoff in July

(Ingraham et al., 1976). There are other potential

outburst flood hazards near Icy Bay (See Chapter 3).

Other features of the glaciated terrain could

cause problems for onshore activities or structures.

Among these are glacier surges, buried ice blocks and

stagnant ice masses, unstable ground, delta front

slumping in the intertidal zone, and drift ice from

glaciers. Buried ice may also occur in the gulf.

Molnia (1976) found evidence of buried ice in submarine

sedimentary deposits at the head of Bering Trough. The

bathymetry there echoed the kame and kettle topography

associated with terrestrial buried ice.

12.6 OCEANOGRAPHY

NEGOA is part of the subarctic region of the North

Pacific. High precipitation, seasonal heating and

cooling, and seasonal mixing by winds and convection

produce distinctive structural features in the upper

waters of the region (Tully, 1964). A dilute surface

layer overlies a zone of rapidly increasing salinity

that begins at about 100 m depth. The halocline causes

a pronounced increase of density between 120 and 200 m.

As vertical mixing between surface and deeper waters is

thus inhibited, most of the seasonal cycles of water

properties occur near the surface. There is a

shoreward decrease of salinity from oceanic to coastal

waters. Because of these features, the region has been

termed an estuarine analog (Tully and Barber, 1960).

Recent physical oceanographic and meteorological

studies have added much detail to the previous

knowledge of currents in NEGOA and the processes

driving them. The net flow is westward and usually

parallels bottom contours. Currents are more complex

and variable west of Kayak Island than to the east. An

apparently permanent eddy or gyre is present just west

of Kayak Island; it is probably caused by the

interaction of topography and currents. The strongest

flows occur near the continental slope and in a narrow

band along the coast. The former current is the

well-known Alaska Current; the latter has no name, but

has been called a coastal jet by Royer (1979b) .
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These winds are most prevalent and strongest in winter

and sometimes exceed 165 km/hr; their effects may

result in offshore winds that extend as far as 25-30 km

offshore.

NEGOA is one of the stormiest areas on Earth.

Winds of 37-38 m/s and waves up to 23 m are likely to

occur every few years, while a 100-year storm could

produce sustained winds of 52 to 53 m/s and waves of 38

m (Table 12.1). Under certain conditions of winds,

tides, and waves, storms may cause flooding of coastal

beaches. Past storm surge floods have extended up to

several kilometers

faces (Ruby, 1977;

most vulnerable to

beach scarps and

inland of presently active beach

Molnia and Wheeler, 1978). Areas

flooding are beaches backed by low

the mouths of outwash streams;

however, severe storms may cause damage even where no

flooding occurs. Single storms have eroded as much as

50 m from beach faces (Hayes, in Ruby, 1977).

Table 12.1 Annual maximum winds and waves for selected
return periods in NEGOA (Brewer et al. , 1977).

Return period (yrs) 1

5 25 50 100

Max. sustained wind (mfs) 38 45 49 53

Max. significant wave (m) 13 17 19 22

Extreme wave (m) 23 30 34 38

1 Ranges represent different values estimated for Marine Areas D & E, upon which this
table is based.

Levels of hydrocarbon and heavy metal contaminants

in NEGOA waters and sediments are comparable to those

in other unpolluted areas of the world’s oceans. Some

petroleum enters the gulf from natural seeps, notably

those near Katalla. The Katalla hydrocarbons seem to

be rapidly dispersed , as no oil is detectable in nearby

waters (Shaw, 1978). Concentrations of floating tar in

NEGOA are as low as those of pristine areas. Seasonal

increases in hydrocarbons in the water column- in spring

are attributable to biological activity. A submarine

oil seep in Yakutat Bay is suspected from anomalously

high methane concentrations observed at the bay’s

entrance (Cline et al., 1978). Levels of heavy metals

are low in NEGOA. Concentrations of particulate heavy

metals are somewhat higher near shore and at depth than

they are offshore or at the surface, a reflection of

the distribution of sediments. In Yakutat Bay

manganese levels increased near bottom, suggesting a

flux from the sediments.

12.7 LIVING RESOURCES AND HABITATS

The prevention or minimization of adverse effects

of OCS oil and gas development on marine ecosystems and

their components is a major goal of the BLM/OCSEAP

Study plan. To obtain information on marine

ecosystems, OCSEAP has made reconnaissance surveys to

determine species density distributions, inventory

habitats and identify key species; trophies studies of

selected species and communities; and studies of the

population dynamics of key species. Other studies have

addressed contaminants, transport patterns, and the

vulnerability of organisms to contamination. Most of

the OCSEAP studies were made in the western half of

NEGOA because that area was believed to be more likely

to be affected by oil and gas development in Sale 39

tracts and because of important organisms and habitats

at risk there. The forthcoming sale in the Yakutat

area and the lack of discoveries on Sale 39 tracts have

shifted the focus of research to the eastern part of

NEGOA .

The likelihood of damage by OCS oil and gas

activities to organisms and habitats appears to be less

in the Yakutat region than in the western part of

NEGOA . This is due at least in part to the more

hostile physical conditions of the eastern part of the

region. Except for a few locations such as Yakutat

Bay, Icy Bay, Darigerous  River, and Dry Bay, protected

littoral habitats east of Kayak Island are few. Fur-

thermore, the high wave energy and substrates along

most of the coastline east of Kayak Island indicate

that spilled oil would not persist long there. Such is

not the case for much of the coastline west of the

island.

12.7.1 Marine mammals

Harbor seals and northern sea lions are common and

conspicuous; they are the only resident pinnipeds of

NEGOA . Both species prefer coastal waters and are

uncommon beyond the shelf break. The largest rookeries

of both species are outside NEGOA; however, hundreds of

harbor seal pups are born annually in Icy Bay, while a

few hundred sea lions are born every year at rookeries

at Cape

Delta is

Sea

capacity

St. Elias and Seal Rocks. The Copper River

another area where harbor seals concentrate.

otter numbers probably approach the carrying

of the habitat in the outer parts of Prince

William Sound, and this species is well established in

the inner sound and eastward to Cape Suckling. Farther

east, small numbers are present around Icy Bay and

along the coastline between Yakutat and Dry Bay.

Large numbers of fur seals move through NEGOA in

spring en route to the Pribilofs and again in fall

during their return to more southerly waters. It is

not known how many are present in each season. High

densities of fur seals have been observed in the
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fisheries in NEGOA, but significant effort also is

directed toward fishes such as arrowtooth flounder and

Pacific cod, which are abundant in the region. Areas

off Cape Suckling and Yakutat are among the most

productive groundfish areas in the Gulf of Alaska. The

contribution of NEGOA to the Gulf of Alaska groundfish

catch has fallen in recent years. In 1977 the total

catch was about 12,500 metric tons.

Little is known of the pre-recruit life stages of

groundfishes in I~GOA. Russian research (Lisovenko,

1964) indicates that the continental slope off Yakutat

is the major spawning ground for Pacific ocean perch in

NEGOA . It is likely that important spawning areas of

other species also occur in NEGOA.

Several forage species that occur in the Gulf of

Alaska are not now commercially exploited, but are prey

for numerous species of fish, seabirds, and marine

mammals. Capelin and Pacific sand lance appear to be

most important; they occur throughout N’EGOA and are

major prey species of many seabirds, seals, sea lions~

salmon, Pacific cod, halibut , and numerous commercially

exploited fishes. Little is known of the distribution

and abundance of these species in NEGOA. Sand lance

and capelin have been shown to be important to

higher-level consumers in the Kodiak and Lower Cook

Inlet regions, and it seems reasonable to assume that

they are also important in NEGOA.

12.7.4 Commercial shellfish

The Tanner crab ecosystem and fishery are

important in NEGOA. OCSEAP investigations indicate

that the species constitutes about two-thirds of the

epibenthic biomass and is distributed throughout the

region. The major fisheries for Tanner crabs are on

the continental shelf in depths of 60-220 m; most of

the fishing effort in recent years has been between

Yakutat and Cape Spencer and in the western part of

NEGOA off Prince William Sound. Tanner crab stocks

have fluctuated widely in NEGOA; the Prince William

region fisheries have supplanted those in the

Fairweather region in recent years. Dungeness crab, an

inshore species commercially fished throughout NEGOA is

second in importance in shellfish catches. The

Dungeness crab fishery is particularly productive in

the Icy Bay area, between Yakutat and Dry Bay, and off

the Copper River Delta.

Unlike in other regions of the Gulf of Alaska,

king crab and shrimp are of negligible economic

importance in NEGOA. A minor commercial king crab

fishery occurs in the Prince William Sound area, and

both king crab and shrimp are utilized for subsistence

throughout the region.

Weathervane scallops are present in the shelf

waters between Cape Fairweather and Cape St. Elias.

They support a moderate fishery that has annually

accounted for about one-quarter of the Gulf of Alaska

catch.

Other shellfish of current or potential economic

importance include razor clams, butter clams, surf

clams, and cockles. Only the razor clam has been

commercially harvested to any extent in NEGOA. Razor

clams occur along much of the outer coast on sandy

beaches, but they have been harvested only in the

vicinity of Cordova. The exploitation of NEGOA’S clams

and cockles has been restricted by the requirement to

certify that clam beaches are free of paralytic

shellfish poisoning, together with the lack of

transport, processing, and marketing facilities.

12.7.5 Benthic invertebrates

OCSEAP and earlier studies have inventoried

benthic invertebrates in NEGOA. Over 450 species have

been collected from the shelf region between Yakutat

and Montague Island. While the ecology of NEGOA

benthos remains poorly understood, it appears that

benthic community structure is determined largely by

sedimentation patterns (Feder, 1979). The inner shelf

areas have high loads of suspended sediment and mobile

detritus-feeders predominate. Though these areas are

high in biomass, they are low in species diversity. On

the outer” shelf and south of Hinchinbrook Entrance,

where suspended sediment levels are lower, greater

numbers of species are present and sessile

filter-feeding organisms are more common.

Important benthic organisms in the NEGOA shelf

region include polychaetes, clams, cockles, snails,

amphipods, cumaceans, brittle stars, sea stars> and sea

cucumbers. Polychaetes are represented by the greatest

number of species (132), followed by molluscs (69),

arthropods (66), and echinoderms (24). Common infaunal

and epifaunal species which are important in terms of

biomass are the clams Axinopsida serricata, Nucula

tenuis, Nuculana pernula; the polychaete Sternaspis

scutata; the box crab Lopholithodes foraminatus; the

sunstar Pycnopodia helianthoides; the basket star

Gorgonocephalus Sp.; the sea star Ctenodiscus

crispatus; the brittle star Ophiura sarsi; and the sea

cucumber Molpadia sp. (Feder and Mueller, 1975).
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c. Kayak Island

.Bedrock/cobble substrate dominant in the

littoral and sub-littoral zones.

.One of the largest sea lion rookeries and

hauling areas in NEGOA at Cape St. Elias.

.Sea otters abundant in nearshore waters; the

eastern boundary of the species’ established

range in NEGOA.

D. Cape Suckling - Cape Fairweather region

1. Beaches

b. Yakutat Bay

.Major deepwater bay in NEGOA. East

side of bay protected, stable, with

gravel/cobble beaches which could

retain oil for long periods.

.Local subsistence fisheries for

halibut, chinook and coho salmon,

shrimp, crabs.

. Some commercial trolling, set

netting in bay.

.Possibly significant seabird

wintering area.

3. Outwash streams and lagoons

.Predominantly  sand; some gravel, cobble,

bedrock. High energy environment,

unstable, with erosion common. Low oil

spill vulnerability.

.Littoral biota impoverished, with low

diversity and biomass. Macrophytes

insignificant.

.Razor clams present

suitable; potential

harvest.

where substrate

for commercial

2. Embayments with fiord circulation

a. Icy Bay

.Hauling and pupping grounds for

thousands of harbor seals.

.Dynamic environment undergoing II. Shelf waters

rapid alteration due to recession

of glacier and sedimentation from A. Benthic habitats

littoral drift.

.Important Dungeness crab fishery. .Substrate commonly sandy inshore due to

.Situk River, Alsek River, and other streams

support major runs of coho and sockeye

salmon; chinook, pink and chum salmon stocks

much less important.

.Most coastal streams with protected tidewater

lagoons fronted by sandspits, which may be

radically altered by floods and storms.

.Estuaries probably important for migratory

waterfowl and shorebirds.

.Lagoons important set gillnet sites for

coastal salmon fishery.

.Oil entering lagoons possibly retained for

long periods.

resuspension, winnowing by waves and

currents; fine sediments dominant on

mid-shelf and in topographic lows such as sea

valleys, troughs; coarser, poorly sorted

sediments at shelf edge and on topographic

highs.

.Mobile detritus-feeders dominant inshore;

more sessile filter feeders offshore where

suspended sediment concentrations lower.

.Tanner crabs common; estimated to constitute

about two-thirds of the biomass of epibenthos

in 1975-76.

.Dungeness crab fisheries inshore; Tanner crab

and scallop fisheries farther offshore.

.Major groundfish and halibut fisheries on the

continental slope, outer shelf and in sea

va 1 leys such as Alsek Trough, Yakutat Sea

Valley and Hinchinbrook Sea Valley. The

outer shelf and slope off Yakutat, the

Fairweather Ground, and the Bering Trough

consistently high production areas for

groundfish.

B. Pelagic habitats

.Coastal surface waters fresher and more

sediment-laden than outer shelf waters.

Influx of fresh water and sediment are highly

seasonal, occurring mainly during the

spring-fall period.

.A 30- to 40-km-wide zone along coast is

migration corridor of young salmon from

spring through fall; higher concentrations of

fish are near the sea surface and near shore.
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platform. The one-billion-barrel Brent and Forties

fields have four platforms each (Busemann, 1978) .

Preemption of fishing space by pipelines would be

negligible. A pipeline would be laid only if a large

find occurred; at most only one or two pipelines would

be needed. Furthermore, pipeline corridors would be

only a few feet wide.

Adverse effects on fisheries such as tainting of

fish flesh or heightened mortality of commercial

species from chronic contamination are possible in the

Yakutat area, but the likelihood of either seems

remote. Contamination from dissolved hydrocarbons in

treated ballast water effluents and those in formation

waters should be negligible if attention is paid to

location of outfalls and effluent concentrations.

Small oil spills (less than 100 barrels) would have

localized effects which would depend on location,

season, and species present. The greatest potential

for oil spill damage would appear to be in enclosed

areas such as Monti Bay. However, spillage in such

protected locations would also be more easily

controlled and cleaned up than offshore. Sma11

offshore spills would probably be dispersed quickly.

Large oil spills (over 1,000 barrels) in coastal

waters during periods when the young of commercially

important fish and shellfish are abundant in the

surface waters are of major concern because of the

possibility of decreased recruitment of stocks in

subsequent years. As noted in Chapter 6, large spills

are comparatively rare. Furthermore, evidence suggests

that the effects would vary considerably with season,

being greater from spring through fall, when young of

the species of interest are more abundant in the

surface waters. The spill’s location and subsequent

movement would also be important factors in determining

the amount of damage. Little information is available’

from the nominations area on the seasonal numbers and

density distributions of epipelagic early life history

stages of fish and shellfish. Therefore, it is impos-

sible to describe the temporal and spatial abundance of

the various species and to predict the risk posed by

spills at various times and locations.

The determination of possible effects of oil

spill-caused mortalities of pre-recruits on subsequent

recruitment of stocks to fisheries is confounded by

other factors. First, year-classes of commercial

stocks usually fluctuate markedly in abundance due to

large natural variations in spawning success,

predation, and other factors. Second, for many species

(e.g., salmon), the stocks in question are mixed,

highly migratory, and enter fisheries over a huge

geographical area. Thus , even if reasonably accurate

estimates of the mortality of young fish and shellfish

due to oil are available, for some species it will be

highly unlikely that subsequent decreases in

fishermen’s catches can be conclusively attributed to

oil spillage.

Local stocks appear to be more vulnerable to oil

spills than transient stocks uncle r certain

circumstances. Large mortalities of planktonic eggs

and larvae of groundfish and shellfish could occur if

an oil spill passed into a spawning ground during or

shortly after spawning, before currents had dispersed

the eggs and larvae. Similarly, a spill at a stream

mouth from which large numbers of salmon smelts were

entering salt water could kill the smelts and thus

affect subsequent runs to that stream. Spills in other

locations would probably be less critical for a

particular stock, Assuming that the aggregations of

the species present comprise diverse stocks , the

effects would be more widely distributed.

Because of the economic importance of the stocks,

the seaSonal  density distributions of pre-recruits need

to be determined. This information will help to

identify particularly sensitive areas and time periods,

and from these, strategies to minimize damage from oil

spills can be developed.

Northern fur seals are not commercially harvested

in the Yakutat area but are important to the economy of

the Pribilof Islands. They are potentially at risk

because oiling of their pelage causes a loss of

insulation and may bring about a thermoregulatory

imbalance (Kooyman et al., 1976). Some fur seals

remain in NEGOA throughout the year; however, the

greatest numbers occur during fall and spring

migrations through the region. The scanty systematic

census data near Yakutat indicate that fur seals

concentrate on the Fairweather Ground just south of the

Sale 55 area in spring. Due to prevailing currents,

these animals probably would not be affected by oil-

spills in the area. The species’ widespread pelagic

distribution suggests that only a negligible fraction

of the eastern Pacific population could be affected by

spills on the Yakutat shelf. However,’it  is desirable

to determine the extent to which the species uses the

region to better assess the degree of risk to the

population.
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central Lower Cook Inlet (Malinky and Shaw, 1979) .

This suggests that chronic releases of dissolved

hydrocarbons in formation waters and treated ballast

waters should not cause harmful accumulations of

hydrocarbons in bottom sediments if mixing and

dispersion are sufficient. If a major spill occurred

in the turbid nearshore zone, however, large amounts of

oil could be rapidly deposited in surficial sediments.

The amount of oil held by suspended material is a func-

tion of the petroleum’s concentration, its chemical

nature and viscosity, the mineralogical and size

characteristics of the suspended particulate matter,

temperature and degree of mixing (Feely et al., 1978).

The potential effects of oil in sediments on the

benthos or the Yakutat region are unknown, since they

depend to a large degree on the amount and

concentration of oil deposited, the tolerance of

organisms to oil, persistence and toxicity of the oil,

and local sedimentary regime. It is probable, however,

that large quantities of oil would enter the sediments

only rarely because major spills are infrequent.

The coast of NEGOA is dominated by a steep

fiord-like topography and there are few resting and

feeding areas for shorebirds and waterfowl between

Prince William Sound and Cape Spencer. Similarly,

there is little protected habitat for wintering

seabirds. The east side of Yakutat Bay is probably, a

wintering area for seabirds, and the estuaries are used

by large numbers of waterfowl, but the relative

importance of the habitats for the various species and

the times they are used is not known. Such information

can be used to evaluate possible effects of

disturbances or a major oil spill in the lease area and

to develop stipulations to minimize disturbance in

these areas.

Patterns of surface currents and results of oil

spill trajectory simulations indicate that a spill

originating in the lease area would probably be carried

westward and would contaminate first the segment of

coastline from Dry Bay west to Point Manby. It is not

clear whether oil would enter coastal lagoons or

Yakutat Bay, where it could persist for long periods

(Hayes and Ruby, 1977b). The coastal jet and circula-

tion patterns in the nearshore zone and in Yakutat Bay

have not yet been studied. Some satellite images show

evidence of predominantly along-shore drift to the west

along the coast and outflow from the west side of

Yakutat Bay, but the orientation of sand bars on the

west side of the bay indicates at least periodic

alongshore drift into the bay’s west side.

Gray and humpback whales are two of the most

common endangered species which occur in NEGOA. The

grays migrate close to shore. Humpbacks have been seen

on the coastal shelf between Yakutat Bay and Cape

Spencer during late winter and early spring.

Information is presently inadequate to evaluate the

importance of the region to these animals or to

speculate on effects of OCS activities or oil spills.

There is even less information on other species of

cetaceans.

ISSUE : Effects of Ocs activities on

subsistence lifestyles.

The consumption of waterfowl, terrestrial and

marine mamma 1s, fish, and shellfish are traditional

among NEGOA residents. Most subsistence activities

occur on shore or in the bays and estuaries. Several

species of salmon, Tanner, Dungeness, and king crabs,

razor clams, halibut, and ducks and geese

are harvested, as well as some larger mammals, such as

harbor seals, moose, deer, and brown bear.

The prims ry effects of OCS development on

subsistence lifestyles could include increased

competition for the living resources between residents

and the imported workforce, disturbances of the

resources, and destruction of habitat, all of which

would decrease harvests. Perhaps the biggest changes

would result from the establishment of an oil terminal

at Monti Bay through concomitant growth of the human

population. The effects of increased demands on

subsistence species can be regulated to some degree; in

practice this often means shortened seasons, decreased

bag limits and smaller harvests of fish and game.

Opportunities to harvest large terrestrial mammals such

as moose and brown bear probably would be most changed,

as their numbers are low in comparison to the other

animals.
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GLOSSARY

ACCRETION: a process of continental growth resulting

from convergence of two lithospheric plates; as the

subducted (or underthrust) plate descends, material

originally between the plates or on the surface of

the descending plate is compressed and added

(accreted) to the upper stationary plate.

ALCID: any member of the avian family Alcidae, a group

of marine diving birds. The family is confined to

the northern hemisphere and its members breed in

colonies on cliff ledges and in burrows. Includes

auks, murres, guillemots, murrelets, auklets, and

puffins.

ADF&G : Alaska Department of Fish and Game, a state

regulatory agency which conducts research on sport,

commercial, and other wildlife species.

ADVECTION: in oceanography, the horizontal

flow of seawater as a current without

the surrounding water.

AFTERSHOCKS: smaller earthquakes which

or vertical

mixing with

follow the

largest earthquake of a series; all shocks occur in

a restricted crustal volume and are related to the

same strain release event.

ALEUTIAN ARC: prominent geographical feature which

includes the Aleutian Island chain and extends into

the Alaskan mainland; it is expressed

topographically by volcanic peaks and ranges, and by

the Aleutian Trench; the arc is a product of

subduction of the Pacific Plate under the North

American Plate. (See also PLATE TECTONICS. )

ANADROMOUS: pertaining to the life history of such

fish as salmon and shad, in which young hatch in

fresh water and migrate to marine waters where most

of the adult stage is spent. Adults migrate back to

natal fresh water to spawn.

ANDESITIC: pertaining to Andesite, a rock type

composed of plagioclase feldspar and one or more

mafic minerals, commonly associated with volcanism

on the perimeter of the Pacific Ocean (the “ring of

fire” which surrounds the Pacific lithospheric

plate).

ANNELID : any member of the phylum Annelida,

the polychaete and oligochaete worms

including

and the

Hirudinea (leeches) . They are found in marine,

freshwater, and terrestrial environments. The major

distinguishing characteristic is the division of the

body into similar rings or segments.

ANNULUS : the space around a pipe suspended in a

wellbore; its outer wall may be either the wall of

the borehole or the casing.

ANTICLINE: a fold in a geological formation which is

convex upward, generally forming ridge or hill

topography. The

the fold.

AROMATICS: a group

oldest strata are in the core of

of organic compounds containing at

least one six carbon ring (benzene ring): abundant

in crude oil and derived petroleum products.

ATOMIC ABSORPTION: a spectrographic method for

detecting elements based on their characteristic

absorption of specific wavelengths of radiation.

AVIFAUNA: species of birds in a specific region.

BAROCLINIC CURRENT: A current that is driven

exclusively by the internal distribution of density

within a water mass.

BAROTROPIC CURRENT: A current that is driven by the

slope of the sea surface.

BASALT : in general, any fine-grained, dark-colored,

extrusive volcanic rock. The principal component of

the crustal rock of the ocean floor.

BATHYMETRY: the topography of the ocean bottom or a

display of ocean depths.

BCF : Bureau of Commercial Fisheries, currently,

National Marine Fisheries Service. An agency within

NOAA for the research, development, and maintenance

of U.S. fishery resources.

BENIOFF ZONE: planar zone (within the earth) of

intense earthquake activity dipping in the direction

of a descending (subducting) lithospheric plate.

BENTHIC: refers to organisms (the benthos) living in

or on, or occasionally associated with aquatic sedi-

ments. These organisms include bacteria, plants,

and animals.

BIOGENIC HYDROCARBONS: organic compounds containing

only carbon and hydrogen, formed by the

physiological activities of organisms. Biogenic

hydrocarbons include saturated and unsaturated

aliphatic hydrocarbons, as well as branched-chain

hydrocarbons, especially the isoprenoids.

Naphthenic and aromatic hydrocarbons occur at very

low levels in marine organisms.
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consequence of an arears

of high productivity

grounds). Impairment of

the viability of one

use, it may be a location

(e.g., rookery, fishing

the space may jeopardize

or more species. (b) A

critical habitat may also be a “fragile” area,

vulnerable to physical perturbations, easily altered

in character, such as an area supporting high

species diversity, or an area that requires a long

recovery period following damage (i.e., tundra,

coral reefs, estuarine marshes). High-latitude

ecosystems are particularly susceptible because

temperature and climatic regimes preclude rapid

growth of many of the life forms. (c) An area may

also be considered as critical economically or

culturally. In this category are areas of economic

resources such as commercial fisheries and areas of

archaeological and scenic value. (d) Any air, land,

or water area, including any elements thereof, that

the Secretary of the Interior, through the

Director, U.S. Fish and Wildlife Service, or

National Marine Fishery Service, has determined is

essential to the survival of wild populations of a

listed species or to their recovery to a point at

which the measures provided pursuant to the

Endangered Species Act of 1973 are no longer

necessary. Such determinations are published in the

Federal Register.

CRYPTIC SPECIES: a species adapted by color, size,

texture, or morphology to appear as inconspicuous as

possible in its surroundings.

DEMERSAL  SPECIES: organisms which spend most of their

life history at or near the ocean bottom, including

remaining at or just above the bottom or burrowing

or browsing in the sediment surface.

DEPOSIT-FEEDING: consuming of edible material from

sediment or detritus, either by ingesting material

unselectively and excreting the unusable portion, or

selectively by ingesting discrete particles.

DEPUTATION: with reference to petroleum, the active or

passive discharge of hydrocarbons from the tissues

of an organism.

DETRITUS: non-living particulate debris in the sea,

including inorganic and organic materials and

particulate originating from dead organisms. An

important source of food for many organisms.

DEVIATION WELL: a well drilled at an angle from the

vertical.

DOWNWELLING: the downward motion of water caused by

the convergence of two or more water masses.

DYNAMIC TOPOGRAPHY: the height of the ocean surface

above some reference level, usually a level of

constant pressure. Differences in height are caused

by differences

surface and the

ECHINODERM: any

Echinodermata.

in the density of water between the

reference level.

member of the invertebrate phylum

They are characterized by radial

symmetry, no segmentation

region. All are marine,

bottom-dwellers. Examples:

cumbers, sand dollars, sea

or well-defined head

most are nearshore

sea stars, sea cu-

lilies, sea urchins.

EDDY : circular movement of water, usually formed where

currents pass obstructions, between two adjacent

currents flowing counter to one another, or along

the edge of a current such as the Gulf Stream.

EDIS : Environmental Data and Information Service

(formerly EDS). Department within National Oceanic

and Atmospheric Administration composed of five data

collection and dissemination facilities on various

aspects of environmental sciences, including

oceanography, weather, marine geology, and

geophysics.

EKMAN LAYER: that part of a water column influenced by

frictional forces. Wind blowing over the ocean

surface causes a surface Ekman layer and the

friction of currents flowing across the bottom

causes a bottom Ekman layer.

ELASMOBRANCH: any member of the

branchii. Characterized by

class of fish Elasmo-

an internal skeleton

which is entirely cartilaginous. Includes sharks,

skates, and rays.

EPIBENTHOS: organisms that live at or just above the

sediment surface. Includes animals (epifauna) and

plants (epiflora) such as king crab and algae

respectively.

EPICENTER: point on the surface of the earth directly

above

EPIFAUNA:

EULERIAN

taken

the focus (or hypocenter) of an earthquake.

See EPIBENTHOS

MEASUREMENTS: Eulerian current measurements

at a fixed point, such as a current meter

attached to a buoy. They differ from Lagrangian

measurements which are made by following a device

that drifts with the currents.

EUPHAUSIIDS: members of the order Euphausiacea, class
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INPFC : International North Pacific Fisheries

Commission. Member countries include the United

States, Canada, and Japan. Its purpose is primarily

to determine the oceanic distribution, abundance,

and migration of salmon.

INSTAR: in arthropods, the stages between molts.

INTENSITY: a subjective measure of earthquake size

based on felt effects and damage to structures; the

Mercalli scale sets forth the commonly used criteria

for various levels of intensity (described with

Roman numerals).

IPHC : International Pacific Halibut Commission. Member

countries include the United States and Canada. Its

purpose is to regulate catches of Pacific halibut in

order to keep the population healthy and sustain

maximum catches.

ISOPYCNAL: in oceanography, a line connecting all

points of equal water density on a map; an isopleth

of density.

ISOSEISMAL: a line or contour on a map connecting

observations of equal intensity of felt effects or

structural damage due to an earthquake.

KATABATIC WIND: any wind blowing downslope; a “foehn”

is a warm, dry downslope wind which has been heated

by adiabatic compression during descent; a “fall”

wind is a cold downslope wind.

KELP : any large brown seaweed of the family

Laminariaceae.

KEY SPECIES: a species that plays an important

ecological role in determining the structure and

dynamic relationships within a biotic community: a

component species of a biotic community whose

presence is essential to the integrity and stability

of a particular ecosystem. Key species may be

unimportant as energy transformers in a biotic

community (i.e., they may not be very abundant nor

consume large portions of the biotic productivity of

a community), but slight variations in their

abundance may result in great changes in the

abundance of other species and/or in

- biotic-community relationships and structure

(example: sea otter).

LAGRANGIAN (DRIFTER) MEASUREMENTS: current

measurements made by tracking a device such as a

drogue, which drifts with the ocean currents, The

trajectory of the drifter is assumed to represent

the trajectory of the surrounding water.

“ 5 0 : (lethal concentrationso) the concentration of a

toxic substance necessary to kill 50 percent of a

test population. (Usually defined for a specific

time period.)

LIQUEFACTION:

behave as

may occur

process during which soil and sand

a dense fluid rather than as a wet solid;

spontaneously in marine sediments during

an earthquake and result in severely reduced bearing

strength of the sediment.

LITHOSPHERE: the solid outer shell of the earth; the

earth’s crust; contains the relatively rigid plates,

both oceanic and continental, which are in motion

and produce the near-surface physiography of the

earth. (See PLATE TECTONICS.) Primarily granite in

continental areas, basalt in oceanic areas.

LITTORAL: pertaining to intertidal and shallow

subtidal waters. Sunlight is able to penetrate and

large seaweeds can grow.

MACROPHYTE: a macroscopic plant. In aquatic

communities, these include seaweeds and emergent

vascular plants (sea grasses).

MAGMA : naturally occurring mobile rock material

generated within the earth at high temperature and

pressure; may contain both solid and liquid phases;

the source

surface.

MAGNITUDE: a

the ground

calculated

of volcanic rocks extruded on the earth’s

rough measure of earthquake size based on

motion recorded by a seismograph. It is

by taking the common logarithm of the

largest motion recorded during the arrival of a

seismic wave (as a deflection on the seismograph).

A correction for distance between the seismograph

station and the epicenter is applied. A unit

increase in magnitude indicates a tenfold increase

in earthquake size. Ground motion is represented by

three seismic wave types, any of which may be used

to determine magnitude: two are body waves (P and

S), which travel through the earth, and the third is

a surface wave, which travels near the surface of

the earth. Magnitudes are identified by the wave

type used during the calculation: body wave

magnitude (mb) and surface wave magnitude (Ms).

“Richter” magnitude (ML) is based on the largest

seismograph deflection only and does not specify

wave type.

MARINE RISER: a telescopic pipe running from a

floating drilling rig to the ocean floor, used to

direct the drill stem and carry mud.
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downslope like an avalanche at high speeds;

associated with pyroclastic ash flows. (Also known

as “glowing avalanche.”)

OFFSHORE: (1) those deeper waters beyond the nearshore

zone seaward to the edge of the continental shelf.

See NEARSHORE . (2) All area of an aquatic

environment seaward of the high water mark, as

opposed to the onshore environment.

OLEFINIC HYDROCARBON: an unsaturated (i.e., containing

at least one

or branched

are arranged

carbon-to-carbon double bond), straight

hydrocarbon in which the carbon atoms

in an open chain.

.
ONSHORE : landward from the point of highest tidal

influence.

OROGRAPHY: branch of physical geography dealing with

mountains.

OSMERID : fish belonging to the family Osmeridae;

mainly small marine fish which spawn in fresh water.

Examples: smelts, eulachon,  and capelin.

PACIFIC PLATE: lithospheric plate underlying most of

the Pacific Ocean. See also PLATE TECTONICS.

PELAGIC: relating to,

open sea; oceanic.

PELECYPOD:

PHENOLOGY:

natural

changes

See BIVALVE

the study

or living or occurring in the

MOLLUSC.

of the

phenomena and their

in season.

periodically recurring

relation to climate and

PHEROMONE: a substance secreted by an organism that

influences the behavior or physiology, or both, of

other organisms of the same species.

PHYTOPLANKTON : algae which live in the open water,

passively drifting with the currents. Size ranges

from microns to a few centimeters.

PINNIPED: any member of the mammalian suborder

Pinnipedia, a group of carnivores adapted to marine

life, but which breed on land; for example, sea

lions.

PLANKTON : organisms inhabiting aquatic environments

which are weak swimmers or passive drifters.

Includes phytoplankton (algae) and zooplankton

(invertebrates and larval fish).

PLATE TECTONICS: contemporary hypothesis which

explains the continuing evolution of the earth’s

crust; proposes that the surface of the earth is

composed of approximately 12 rigid, relatively  thin

(loo to 500

continuous

earthquakes,

concentrated

km) lithospheric plates which are in

motion relative to one another;

volcanism, and mountain building are

at plate margins as a result of plate

motions; mechanism explaining Continental Drift.

PLEURONECTIDS: fishes which are members of the family

Pleuronectidae. These are the right-eyed flounders

(the eyes of the flatfish migrate to the right side

of the head at metamorphosis). Examples: halibut

and flounder.

PLUG DOME: a steep-sided protrusion of

forming a dome-shaped or bulbous

volcanic vent.

viscous lava

mass over a

POLYCHAETE: any member of the class Polychaeta of the

phylum Annelida. Segmented worms that are chiefly

marine, including sedentary (living in self-secreted

tubes or burrows) and free-moving forms.

Distinguishing characteristics include lateral

appendages (parapodia) on each segment for food

gathering and locomotion. The majority are 5-10 cm

in length.

PSYCHROPHILIC : of or pertaining to a type of microbial

organism which grows fairly rapidly in temperatures

of 10° to -8°C; these organisms may also grow well

in the mesophilic range (20° to 45°C).

PYROCLASTIC MATERIAL: hot, often incandescent, ash and

other debris ejected during an explosive volcanic

eruption.

RICHTER MAGNITUDE: See MAGNITUDE.

RISER : a pipe through which liquid travels upward.

ROYALTY TRACT: tract lease for which the bidder

a minimal cash payment but instead proposes

the federal government a significant royalty

offers

to pay

on any

oil/gas profits. Royalties in excess of 60 percent

have been proposed.

SALMONID: fish which are members of the family

Salmonidae. Examples: salmon, trout, char,

whitefish.

SATURATED HYDROCARBON: a hydrocarbon in which all the

carbon-to-carbon bonds in the molecule are single

bonds.
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greater than the gradients above and below it; a

layer in which such a gradient occurs. Principal

thermoclines in the ocean are either seasonal, due

to heating of the surface water in summer, or

permanent.

TH8RMOGENIC HYDROCARBONS: hydrocarbon compounds

produced through alteration of organic materials by

temperature and pressure. Examples: crude oils and

products of industrial combustion.

TRAMMEL NET: a three-layered net with the center layer

finely meshed and slack so that fish passing through

carry some of the center layer through the coarser

opposite layer and are thus entangled.

TRY NET: a small trawl net towed behind a boat to

capture organisms within the net’s path.

TSUNAMI : “seismic sea wave”; great wave generated by

submarine crustal displacement or landslides;

associated with major earthquakes and volcanic

eruptions. Tsunamis travel at high speed and low

wave height in deep water, but slow in speed and

build to tremendous heights upon reaching

shorelines.

TUNICATE: marine chordate animals of the subphylum

Tunicata. Most are sessile as adults after passing

through a planktonic larval stage. Widely

distributed in all seas from nearshore to great

depth. They vary in size from microscopic forms to

several inches in length and have internal organs

surrounded by a non-living “tunic.” Common name is

sea squirt.

UMBO : a lateral prominence just above the hinge of a

bivalve shell.

UNIBOOM : type of seismic reflection equipment.

UNIVALVE MOLLUSC: animal of the phylum Mollusca

possessing a shell that is attached to the body at

one point. Examples: snails, limpets, abalone.

UNSATURATED HYDROCARBONS: hydrocarbons in which at

least one of the carbon-to-carbon bonds is a double

or triple bond.

UPWELLING (COASTAL): the upward motion of water caused

by forcing of surface waters away from a coastline.

The importance of upwelling is that it can bring

nutrient-rich waters into the surface layers where

they can be used by phytoplankton.

USGS : United States Geological Survey, Department of

the Interior. Primary responsibility is research

and development in seismology, geology, and

geophysics.

VAN VEEN GRAB SAMPLER: bottom sediment sampler having

two hinged jaws and a clamshell-like operation.

VELOCITY SHEAR: in oceanography, rate of change of

velocity with horizontal or vertical distance.

WIND STRESS CURL: the torque imposed on surface

currents in a non-uniform wind field.

ZOOPLANKTON: animals occupying aquatic environments

but considered weak swimmers or passive drifters.

Maximum size of organisms falling in this category

is a few cm and includes small jellyfish, larval

fish, and larval and adult forms of many

invertebrates.
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