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ABSTRACT

Surface strain and vertical heave response experiments were conducted
for a single floe within the marginal ice zone of the winter Bering
Sea. The strain was measured using an array of three strainmeters
placed in a 120° rosette configuration, and the heave was computed
from simultaneous records of vertical acceleration on the floe and in
the water around the floe. Physical properties studies and underwater
traverses by divers were also carried out for the floe. The data are
presented and interpreted in the light of the subsequent floe fracture;
the mean fracture strain amplitude cis found to lie between 44 and

85 ustrain. A discussion of the directionality of the wave energy

during the experiment is also given.
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INTRODUCTION

This report describes a field study of the response to ocean swell and
subsequent fracture of an ice floe near the ice edge in the winter Bering
Sea. In the Bering Sea the ice edge forms in the following way: First,
McNutt (1980) shows that the sea ice forms in the northern coastal polynyas,
from where it is advected southwest as large, km-sized floes by the prevail-
ing northeast winds. As these floes approach the ice edge, the data of
Squire and Moore (1980), and Bauer and Martin (1980) shows that the ocean
swell propagation into the pack fractures the large floes into small floes
with horizontal scales of 20-40 m. The combination of wind and swell then
acts to raft and ridge these floes, yielding ridges as high as 1 m and keels
as deep as 5 m. Because of the combination of increased aerodynamic drag of
the ridges and the small floe size, the floes near the edge are blown south-
west away from the pack as groups in the form of ice bands measuring about
10 km long by 1 kmwide. As they move into warmer water, after one or two
days the bands melt. To summarize, the propagation of ocean swell into the
pack fractures the large floes and increases their aerodynamic drag, thus
leading to their eventual melting. Wadhams (1980, page 56) describes a
similar process at the Norwegian Sea ice edge, and refers to the edge as an
ice "scrapyard". Because of these effects, any future numerical model of
the ice edge may require in addition to wind, current, and temperature data,
information on both ocean swell and floe fracture properties.

To investigate these processes, we carried out a study of the flexural
properties of a single floe from the NOAA ship SURVEYOR during our March
1979 ice edge cruise. We did the experiment on 6 March 1979 at 58°34'N,

167°53'W, with the ship just within the ice edge. The weather on this day
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was good with negligible winds and an air temperature of -7*C at 1000 h
local. The study proceeded as follows: In the morning oneofus (S.M.)
reconnoitered with a small boat the ice floes within a distance of about
one nautical mile of the ship. We chose a floe typical of its surroundings
with the restrictions that the floe be large enough to support the
personnel and, to simplify later comparison with theory, have a minimum of
surface relief.

We then landed a party of five on the floe and carried out the follow-
ing procedures: First, we took two ice cores through the floe and deter-
mined the floe thickness to be about 0.3 m. Also, we made a map of the
floe surface. Then we deployed three strainmeters in a 120” rosette, a floe-
mounted accelerometer, and an accelerometer freely floating in the water
alongside the floe. The data recorded simultaneously from these instruments
was used to compute the response of the floe to the incident wave energy.
The waves force the floe into three bodily motions: heave, surge and sway;
three angular oscillations: yaw, pitch and roll; and a flexural mode due
to the pressure variation of the propagating wave beneath the floe. The
strainmeter data give the flexural response while the accelerometer data
give the heave. The accelerometer in the water and a Waverider buoy
deployed from the ship measured the ocean wave spectrum. After these meas-
urements were completed, we returned to the ship about 1300 h. Next, in
the afternoon during a related ice properties survey, we overflew and photo-
graphed the floe. Then one of us (V.S.) returned to the floe with divers
from the ship, who surveyed the underside of the floe finding keels of order
4 m in depth. We also found that in our absence the ice floe had fractured,
so that during the morning experiment the stress must have been very close

to the critical fracture value.




To describe our observations in detail, Figures la and Ib show two
aerial views of the floe, taken from an altitude of about 60 m. The first
photograph shows the floe and its surroundings. The second photograph is a
closer view, where on the floe surface footprints are clearly visible.

We called the dark area toward the camera  the beat.?z; shortly after this
photograph was taken, this end of the floe broke off. Figure 2 shows a map
of the floe made from surface measurements. The map shows the location of
the beach, and the position of a small crack and a small ridge which ran the
length of the floe. The map also shows the location of the triaxial strain
rosette, the location of the two core holes marked F1 and F2, and the posi-
tions where the vertical accelerometers were deployed. Finally, the lines
AEB and CED show the location of the underwater traverses, and the dotted
line shows the approximate position of the floe fracture line. Next, Figure 3a
shows a surface photograph looking down the small ridge toward the beach,
where the flag marks the ridge, and the strain array is to the right. Figure
3b shows a photograph of the strain rosette, and also shows that the floe
surface was covered with about 5-10 mm of snow.

To describe the ice properties of the floe, we cored the floe in two
places with a SIPRE corer and measured the ice temperature, salinity, and
crystal structure. To determine the temperature, we placed the ice core in
an insulated box cut to fit snugly around a SIPRE core, drilled into the
side of the core through preset holes, and measured its temperature profile
with a thermistor. We then cut the core vertically in half. One half was
cut into 50 mm vertical sections which we separated and placed into plastic
bags for later salinity analysis on board the ship. The other half was both
photographed and used to determine the distribution of frazil and columnar

ice with depth.







Figure la, b. Aerial photographs of the floe: (a) The floe and its
surroundings, (b) a close-up view.
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Figure 2. A map of the floe. F1 and F2 mark the core hole positions;
dashed 1 nes BEA, DEC show approximate positions of underwater
surveys.




Figure 3a, b. Surface photographs: (@) Looking down the ridge;
(b) the strain rosette.
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Figure 4 shows the temperature, salinity, and crystal structure of each
core; F1 was 280 mm long, and F2 was 300 mm long, where Figure 2 shows the
core locations. Similarly, Figure 5 shows photographs of these cores. The
core F1 consisted of a mixture of frazil and columnar ice, with a 145 mm
thick layer of frazil ice at the top over a mixture of columnar and frazil.
The snow had the highest observed salinity of 18 %/o00s the ice core had an
average salinity of 8.2 /00 and an average temperature of -3.7°C. The
second core had a 175 mm thick layer of columnar ice over a 125 mm thick
layer of frazil ice which suggests that the pieces of the floe on either side
of the crack may have formed under different conditions. This core had an

average salinity of 7.6 °/,and an average temperature of -3.4°C.

Finally, divers from the ship investigated the under-ice topography after
the floe had fractured. They did this by running knotted lines beneath the
floe, then recording the ice depth at each knot from their wrist pressure
gauges at 10 foot intervals along the line. Figure 6 shows the results of
the traverses; beneath the small pressure ridge the ice reached a depth of
3.5 m. The amount of material piled beneath the ice is in great contrast
with the smooth appearance of the surface; this result is consistent with
our striking but not recovering deep rafts with the SIPRE corer. In summary,
the floe consisted of a smooth 0.3 m thick ice sheet over a highly irregular

bottom topography.
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INSTRUMENTS
Strainmeters

The rod strainmeters and the associated electronics used throughout the
experiment were developed by SPRI and the Cavendish Laboratory at Cambridge
University from an earlier design for a geophysical wire strainmeter (King
and Bilham, 1973). The active unit in the instrument is an LVDT (linear
variable differential transformer) with its core fixed directly to a 1 m
Invar rod. When strain occurs, the rod moves the core within the transducer
body . The resulting change in signal is then amplified and recorded either
digitally after filtering at the Nyquist frequency, or with an analog FM
tape recorder. The output may also be monitored using a standard chart
recorder. Should the measured signal drift off-scale, it is returned to zero
using a small motor to drive the entire transducer assembly horizontally on
bearings independent of‘the core. To avoid lateral movement of the core
within the LVDT, the core is mounted between two rosettes of steel springs.
At the other end of the strainmeter the Invar rod is clamped rigidly to the
base unit. A clamping bar links the two ends for transportation and facili-
tates easy deployment on the ice where standard 6 inch coach screws are used

to bond the instrument securely to the floe surface.

Accelerometers

The sea state local to the ice floes was measured using a vertically
mounted Schaevitz-EM servo accelerometer housed within the waterproof cap
of a free-flooding, vertical spar buoy with chain ballast (SEASPRI) (Wadhams
and Squire, 1980). A single accelerometer introduces an error due to sea

surface tilt but for the wave periods encountered, it is found to be < 1%.
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The vertical bodily accelerations of the floes were measured by a similar
accelerometer in an environmental housing placed directly on the ice surface.
Again the error introduced by tilt is negligible. The two acceleration
records allow us to determine the heave response of ce floes over the range
of frequencies present in the open sea.

During the experiments we also deployed a Waver der buoy from the
SURVEYOR to measure sea state. The instrument is a freely floating sphere
containing a gimbal-mounted accelerometer which integrates measured accele-
ration to give sea surface displacement. The data are then transmitted
back to a data logger where they are filtered and recorded at a sampling
rate of half a second. The buoy could easily be deployed and retrieved

using the telescoping boom crane on the forecastle of the ship.
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DATA ANALYSIS

The basic hypothesis behind any data analysis performed on ocean wave
data is that the sea surface may be regarded as a random process. Further-
more, the process is assumed to be statistically stationary and ergoedic
(Bendat and Piersol, 1971); otherwise little progress can be made. With
these assumptions it is possible to define a Power Spectral Density (PSD)
function G(f) which may be used to relate energy density with frequency f.
This may be generated as follows: Consider a stationary and ergodic random
process y(t). It is not possible to define a Fourier transform{*] in the

usual way, viz.
YL Y(D)} =Jm y(t) e 127Ft g¢ )

since such a process cannot satisfy absolute integrability. It i1s also true,
however, that y(t) is impossible to measure since it requires a knowledge of

y for all time t. Consider instead a sample

yith-Fstsy,
}’T(t) D T (2
0 ltl > '?

For this function a Fourier transform can be defined and will exist for all

T < =. We may then apply Parseval ’s theorem (Lathi, 1965) to obtain

0

We cannot allow T + « since the Fourier transforms which we denote as Y{‘}.

is then undefined. However, the expected value of[Y{yT(t)}[2 does exist,
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so that

— 7 Limit  E[|Y{y;(t)}|21df
Y*® - °°T—)oo T - 4)

The integrand in this expression is called the two-sided PSD. If we restrict

frequency to positive values, then we may define the more usual one-sided

PSD as 2]
Limit | E[|Y{y-(t)}
G(f)=2TM[ |y$ | 1 (5)
so that B
YJ 6(f)df ®)
0

From this equation it can be seen that the mean-square-value of sea surface
displacement can be found by integration of the PSD over frequency space.
Likewise, the mean-square-value of wave displacement at particular frequen-
cies may be found by integration over small frequency bandwidths.

The PSD may be characterized statistically by its moments. We define

the n™ moment of the spectrum by

. rf[m G(F) " df , )
(Pitt et al., 1978) so that the zero™ moment may be interpreted as the mean-
square sea elevation yZ or equivalently, the total energy in the wave system.
From the moments a set of parameters have evolved which are of interest in
oceanographic and ocean engineering applications. We define only those para-
meters used in the current text:

Significant wave height, Hs = 4/m
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[m
Mean zero crossing period, T,=/ ﬁ% P o
2 J fG2(o)df

Goda’s spectral peakedness parameter, Q= s 5 ’
m
0

(Goda, 1970). For a more comprehensive list of currently used wave para-

meters, many of which were developed for nonspectral analysis, see for
example Pitt et aZ. (1978).

The actual mechanics involved in producing a power spectrum have been
considerably simplified with the introduction of the FFT (Fast Fourier
Transform) algorithm of Cooley and Tukey (1965). This algorithm comPutes
the Fourier transform Y{-} of the time series y(t) by decomposing its
N (= 2pwhere p is an integer) digitized points into composite (nonunity)
factors and then transforming over the small number of terms in each factor.

From Y{:}, using equation (5), an estimate PSD for a single sample may then

be found from

(D “Eviy(n|2 ®

Unfortunately, such an estimate PSD has a standard error of unity (Wadhams,
1973) so that some averaging must be carried out. Frequency smoothing,
whereby a sing” e sample record is used and contiguous spectral components
are averaged, 's used in the current work. Neglecting bias errors, the
standard error when this type of smoothing is carried out is

.
YGrouping factor

where the grouping factor is the number of frequency components used.
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For the Bering Sea cruise data the original time series were filtered
at 1 s to avoid aliasing, and either digitized manually or through the
PDP-11 coupled A-D facility at Cambridge University. The digitized records
were then processed to remove rezero steps using an interactive routine
developed by the Sea lIce Group at SPRI (Ray Home, personal communication,
1979). These rezero steps had either been introduced into the data by the
servo motor in the rod strainmeters, or manually in the case of the accelero-
meters. The mean and trend were then removed, and the end tenths of each
time series tapered to reduce side lobe leakage (Bingham et al. | 1967).
Finally, the SPRI FFT/graphics package was run on each record with a grouping
factor of nine. The standard error in all the smoothed spectra is therefore

one third.
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THE BERING SEA DATA AND THEIR INTERPRETATION
Seastate

The Waverider and SEASPRI buoys were used in the open water to monitor
the incident wave energy during the experiment. Both instruments can pro-
vide an estimate of sea surface displacement at a particular location though
the directionality of the propagating ocean waves and their spread cannot
be found. Stereo mapping techniques, several wave probes, or a buoy which
is able to measure tilt as well as elevation, are necessary for a complete
picture (Kinsman, 1965). Such an experiment would be virtually impossible
to carry out near a marginal ice zone so that we are necessarily limited to
a nondirectional analysis.

Unlike the Waverider buoy, SEASPRI has no integrating circuits in the
electronics so that the recorded time series represents the sea surface
acceleration in m s~2 rather than displacement, The record may be corrected
to displacement by first assuming that the sea surface is composed of the
sum of an infinity of sinusoids of random phase. Then, for the nth component
mode

Y “An COS 2n(>hi - ot ap), (9)
the acceleration is given by 4n2f% yn,where y. 1s displacement, An is ampli-
tude, A is the wavelength, fn is the frequency and o is the phase. It is
clear that in principle, correction from acceleration to displacement is
simple and merely involves division by 4w2f%. For a real sea where an infinity
of modes exist, this computation must take place in frequency space so that
it 1s not possible to generate a SEASPRI displacement time series directly.

Working with the SEASPRI record then, we see that to convert to the usual
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power spectrum representing ocean wave energy, we must divide each spectral
component by 16z*f*, When this operation has been carried out, the spectra
from the two buoys should be equivalent. In reality, the two sets of spectra
are somewhat different. This may be attributed to three factors: The respec-
tive time series are not simultaneous and were recorded about a kilometer
apart, the record lengths and hence the frequency combs for the spectra are
different (SEASPRI records were 30 minutes in length whereas the Waverider
records were only 20 minutes), and there was a tendency for the SEASPRI buoy
to move with the floe so that its high frequency response was impeded.
Typically, a comparison between the two wave buoys gives significant wave
heights which differ by only 0.04 m and spectral peakedness parameters which
differ by 0.4. The worst discrepancy is in the statistical wave periods
where the estimates from SEASPRI can be as much as 2.5 s higher than the
equivalent Waverider buoy period. Clearly SEASPRI is moving with the floe.
Power spectra from each of the buoys are shown in Figure 7 where the ungrouped
and grouped spectra, and the original time series are shown. Figures 7a, b,
c, and d represent Waverider buoy data, and Figures 7e, f, g, and h represent
the SEASPRI data. The grouped spectra bear a remarkable similarity for all
but the low period energy, indicating that our interpretation in terms of
statistical parameters may have been overly pessimistic. We shall therefore
regard the SEASPRI data as a measure of the forcing in our experiment and
“normalize” all our records from simultaneously-recording, floe-mounted
instruments with respect to the SEASPRI spectra. The low period energy
apparent in the power spectra, however, will be treated with caution.

A further question we may pose before leaving our discussion of the

open water wave energy concerns our original assumption of stationarity.
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We have four contiguous records from the Waverider buoy so within the dura-
tion of the experiment, we may compare the statistical parameters from

consecutive power spectra (Table 1).

Table 1. Comparison of statistics for consecutive
Waverider buoy spectra.

Record 1 _2 3 4 _
Significant wave height, m 0.32 0.29 0.29 0.30
Mean zero crossing period, s 9.9 10.0 9.3 8.7
Spectral peakedness 3.9 3.2 3.1 2.5

The data show a general spectral broadening with negligible change in
significant wave height. The peak representing swell in the 12-13 band is
stationary while there is a noticeable buildup of energy between 5 and 6 s.
This increase in low period energy leads to a shortening of the mean zero-
crossing period and the decrease in the spectral peakedness (a high Q,
implies a narrow spectrum). We see once again, therefore, that we must
proceed with care in our interpretation of the data at shorter periods.

An additional observation which we mention only in passing since it
preempts subsequent data analysis, i1s that within an hour or so of our
leaving the floe, i1t cracked into two parts. If we assume that this fracture
was due to wave-induced flexure, perhaps there is a link between fracture
and the onset of shorter period waves of significant amplitude. This may be
argued qualitatively if the floe is assumed to bend perfectly to the sea
surface. Then a short wave will cause large curvature whereas for the longer

waves, the floe will tend to ride the wave and bend less.
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Heave Response

The heave response of our-floe may be computed from the floe-mounted
accelerometer data. This accelerometer was placed close to the strainmeter
rosette approximately 10 m from the SEASPRI buoy (Figure 2). The recorded
time series are synchronized with the equivalent SEASPRI wave record, and
are of the same duration. Figures 8a, b, c, and d show the ungrouped and
grouped power spectra, and the time series generated in the same way as for
the SEASPRI data. The spectra have again been adjusted by division by a
factor 167*f* so that the integrated value of PSD over frequency space
represents the mean square amplitude of heave. This enables a direct com-
parison to be made between the floe-mounted accelerometer and the correspon-
ding SEASPRI spectra.

The grouped spectra show the same spectral peak between 12 and 13 s but
do not show the short period energy characteristic of the Waverider buoy
spectra. This is to be expected since One would think that most of the
short period energy would be reflected (Wadhams, 1973). The resonant heave
frequency (Lee, 1976) of the ice floe in this case is so close to the
spectral peak, and the incident wave forcing spectrum is so narrow, that no
discernible natural oscillation can be isolated. The significant wave
height, which may be interpreted as the significant height of heaving, is
approximately 0.3 m for all the records.

A direct comparison between incident wave energy (as measured by SEASPRI)
and floe heave may be found by use of the frequency response function and the
associated coherence function (Bendat and Piersol, 1971). The frequency

response function H(F) is defined:

Gyo(F)
G (f) -

H(P) =
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where G; is the (auto) power spectrum of record 1, and G;, is the cross
power spectrum between records 1 and 2. The magnitude and phase of H(f)
are called the gain factor and phase factor, respectively. The coherence
function y2(f) is defined

2(f) - 1G12(F) |2 a
G (F)G(F)  °
where G, is the (auto) power spectrum of record 2.

In this case we consider the SEASPRI time series as record 1 and the
floe-mounted accelerometer time series as record 2. Then the gain factor
of H(F) gives the floe’s response as a function of frequency, and the phase
factor an estimation of the phase velocity or wavelength of the propagating
waves. The coherence function, which varies between O and 1 depending on
whether the two records are completely uncorrelated or perfectly coherent,
is used to " repose confidence limits on H(f) (Bendat and Piersol, 1971).

Figures 9a, b, ¢, and d show the frequency response function and coher-
ence function for heave. A 95% confidence interval for the estimate has
been calculated and may be used to determine a frequency domain for the gain
factor within which the floe Is responding “perfectly” to the incident waves.
In this case the word perfectly is used loosely since the response can be
anywhere within the confidence limits. In terms of period, the domain for
the floe extended from about 6 to 16 s.

Interpretation of the phase factor was carried out only for those time
series recorded on the same machine (F gure 9a, b). First a bathymetric
chart showed that with generous bounds the water depth h beneath the floe

was 45 < h < 55 m. Then a theoretical curve was plotted for the wavelength
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of surface waves for the bounding depths of water as a function of period
using

A= J . (12)

on £2] (———4“;fzh)

2£2
where I(éﬂzf—b)is the iterative hyperbolic cotangent function introduced by

Pierson (1955). Given that we know the separation between SEASPRI and the
floe-mounted accelerometer (10 m), we may then compare the wavelength pre-
dicted by the theory with that computed from the phase factor of the measured
time ser-es. Figure 10 shows the results of this calculation; the data show

reasonab’ e agreement with the theoretical curves.

The Strain Data

In an earlier section we mentioned briefly that a single buoy could
provide directional information only if it was able to measure tilt as well
as sea surface elevation. One is tempted to ask whether a wavebuoy which.
could measure its own flexural surface strain field as well as sea surface
elevation might also give some idea of the directional wave spectrum. In
engineering applications this question is equivalent to asking whether it
is possible to locate the axes of principal strain and compute the two
principal strains for a body with some arbitrary strain field. This involves
the use of a strain rosette whereby three instruments are placed at a known
angle to one another so that the three unknowns may be computed from the
individual strain records. A variety of rosette configurations exist and
these are discussed fully in the engineering literature (see for example,
Meier, 1950; Holister, 1967). We use the so-called delta (120°) rosette

since at the outset of the experiment, one has no knowledge about the
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direction of propagation of the significant waves. The precise configuration
chosen, however, is unimportant. In this section we will discuss two possible
directional interpretations of the strain data which may be developed into an
order-of-magnitude estimate of the surface strain required to fracture our
floe, and probably Bering Sea floes in general. We begin however with a
brief general discussion on the appearance of the strain spectra.

Typical strain power spectra are shown in Figures 11a and b alongside
the corresponding time series. The spectra were derived in a similar way
to previous spectra but with no correction to energy density. The vertica’
units are therefore microstrain? s where microstrain is given by (extension/
original length) x ~0-8. The strain time series are precisely synchronized
with the equivalent SEASPRI and floe-mounted accelerometer records. Examina-
tion of the figures shows that the spectra are much broader than previous
power spectra, with their spectral peakedness Q,< 1.5 compared with Q > 3
for the heave spectra. In fact it is tempting to ask where the additional
high frequency energy shown in the strain spectra comes from. The argument
iIs similar to that for the acceleration correction: Consider the floe to
bend perfectly to the waves so that the curvature of its neutral axis and
the sea surface are equal. Then, if we suppose that the ice floe is of
thickness H and is isotropic, and for simplicity we treat a single wave mode

as before, viz.,

A

_ X
¥y = A, cos 21r<—;]- - ft+ un) , (13)

we May calculate the modal surface strain En on the i1ce Tfloe as
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2
-H 8 In z

w7 T () (14)

[

Alternatively, the wavelength may be related to frequency using equation (12)

Sﬂ“f;H 4w2fﬁh
g = I2 )yn . (15)

so that

n g2 g

Since we have already computed the theoretical relationship between wave-
length and frequency in finite depth of water h (Figure” 10), the breadths

of the strain spectra are best interpreted using equation (14). As frequency
increases, A decreases so that A~ increases rapidly. Hence, a strain
spectrum will tend to be broad because its high frequency components are
significantly enhanced.

From equation (15) it is in principle possible to derive the correspond-
ing PSD for sea surface displacement. However, this calculation would pre-
assume isotropy, so that since we are interested in relating our data to a
fracture strain, the spectra have been left as strain spectra. The area
beneath a strain spectrum therefore represents mean-square surface strain.

The simplest approach to obtaining some idea about the directionality
of the strain field is to relate a spectrum from each strainmeter to the
equivalent SEASPRI spectrum by means of the frequency response function
defined earlier. This computation has been carried out and the results are
shown in Figures 12a, b, and c where the gain factors for each instrument
relative to SEASPRI are plotted. In this case a gain factor of unity does
not imply a perfect bending response because of the reasons outlined above.
To normalize the bending response, it is first necessary to correct by

multiplication of the gain factor |H(f)| by
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IT this is carried out, the bending response in each of the three strain-
meters may be found and hence the angular division of energy so long as floe
rotation is negligible. Observations during the experiment show this to be
the case. It is found that most of the energy in the open water is propa-
gating from between 200° and 220° and that the directional spread is
extremely small.

An alternative, and better approach to finding the direction of the
strain field is to take advantage of the wealth of literature in the engineer-
ing textbooks on strain gauge rosettes. Then for a delta rosette the principal
strains €ps g and the direction of the axes of principal strain & are
given by

2

L
x>
+
m
{ws)
0]
ol

4
=g (el +el+el-eep - eye - 8361)1/2 ,

Tan 2¢ = et 16)

where e,,E,and e, are the strains measured by strainmeters , 2, and3,

3
and s is measured from strainmeter 1 (Jaeger, 1956). Due to the slight
phase lag introduced by instrument separation, the principal strains must

be computed from the power spectra rather than directly from the strain time
series. This may easily be seen i1f one considers a single monochromatic

wave mode traveling along the axis of one of the gauges, then the other two

instruments will experience the same displacement slightly after the first
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strainmeter. An extreme case 1S when the strain measured by the first
strainmeter averages out to zero, then the standard rosette calculation
will produce erroneous results for the principal strains. In this case
the angle §is computed correctly, but When waves of arbitrary alignment
are permitted, or worse a random short-crested sea, significant errors will
be introduced in all the computed principal strain parameters. The alterna-
tive analysis is outlined insquire (1978) where it is applied to flexural-
gravity waves in fast ice.

The strain data for the floe have been analyzed using Squire’s method
to compute a spectrum of angular variation and amplitude spectra for each
principal strain. TO derive the spectra, small frequency bandwidths Were
chosen (nine contiguous spectral values) and the root-mean-square strains
were calculated at the center frequency of each bandwidth. These values
were then used in equations (16) to derive eps € and eas functions of
frequency. Implicit in the analysis is that floe rotation may be neglected.
This is believed to be a reasonable assumption in the present case since
none of the strain records significantly changed in amplitude with time .

Figures 13a, b, c, and d show the principal strain amplitude spectra
and the angle spectrum for the four strain experiments. It is important to
realize that these are amplitude spectra (equivalent to Fourier transforms)
and not power spectra though each spectral value does have some statistical
meaning. The significant strain cannot be computed from this type of spectrum
easily however.

The principal swain £, is over an order of magnitude greater than ep
This indicates that the strain field has little directional spread since

most of the energy is exciting strain iIn a very narrow angular band.




38

BERING SER CRUISE 73538881 DRTR FILE FMB2(CH1 1

BERI . BRATA FILE FMB2( 0421

BERING SER CRUISE 790350 'OATA FILE FMB2(CHI ) .
GROUPING  FACTOR 9

=
=3
o
B
@]
)
=
1
m

EPSILONL
’-l LA l LR L rl LI R T '.l LI M ) rl L I.'
Ll 1 1 l | S | l J I T ) P y——
8.1 8.2 0.3 8.4
FREQUENCY HZ
EPSILONZ
| EE—— l | I R 3 T 11 . PR ) T 1 7
mvv-/"'\/\,w\’_’

L. 1 l L1 L1 I 1l Ll I Lol Lt 1 l Lt L
8.1 8.2 8.3 0.4
FREQUENCY HZ
GAMMA
LI N B | l L l LELALEEL) l LI DAL AR "“l LI

|Ill‘ll||llll‘lll||ll|

0.1 0.2 0.3 0.4
FREQUENCY Hil

BERING SER CRUISE 79038591 . DATA FILE FMB2(CHI )
BERING SEA CRUISE 79835501 . DATA FILE FM@2(CH2 ]
BERING SER CRUISE 79838601 . DATA FILE FMB2(CH3)
GROUPING  FACTOR 9
EPSILONI
LI 2N B | 'I LI I LI I L L e l LELELER
z3. -
[+ 4 -
E
82 N
[ -4
]
=1. -
a | S -1 I Lt 1.1 I § I S - 1 ooy r
8.1 0.2 8.3 0.4

FREQUENCY HZ

EPSILONZ
3. T T ] ™ T L) T —
Z 2.
[+
[
=
81
o
=
:a.mv___
-1 II‘IIIIllell‘lll.IIII].
' 8.1 0.2 0.3 8.4
FREQUENCY Hi!
GAMMA
-l—||||—|||l—|l1nﬁ]|1|||l—l||1
2. |- ‘ -

£
o 0. PSR W WL oV W,
?: 2] ?VJMMM (

P L1l | Lt ] ] I 1 11 l ] | -1 I 1 1=
0.1 8.2 2.3 8.4
FREQUENCY HzZ

Figure 13a, b. Amplitude spectra for principal strains and principal strain
direction. Experiments began at a) 10.38 and b) 11.08.




ZH AON3ND3YL

. 0 2'8 19
_
o =
YWHED
ZH AININOIY4
Vo o 20 '8
LA ) 1 — ] T 1 1 — L] 1] 1 1 — 1 L 1} — ] 1]
)')l)\(/la\l\{.\(l)).\.\.(r)]ﬁc
I TS TS T
ZNO1Sd3
ZH AININO3YS
70 e'e VAl i's
= L 1 1 1 — T 1 1] — T T
INDTISd3
6 01964  ONIJNOY¥O

- (EHD)Z@W4 3714 YIVQ °2@9@EBEL 3SINYD H3S ONId3d
*(ZHD)Z28Wd4 3114 BlH0 - 2P9BE@BL 3SIN¥D Y3S ONIY3I8
< (THD)ZOWd 3114 blb0 -2999€86L 3SINYD YIS ONIy34

©
SNEI0BY

‘2

NIBYLSO¥IIW

m N - ®
NIUYLSO¥IIH

~

£H AUNIHOIES
¥e £ A’ "0

©
SNUIOYY

HWWED

ZH AININORS
L] € Al 1"0

‘1~

i
\
NIGYLSOY¥IINW

ZNONIS43

ZH AON3IND3N4
¥y-e €9 20 ]

NIBY1SOMIIK

INOTISd]

6 401344  ONIdNOYI
“(EHD1ZBW4 J114 Ui " 2090E@6L 3ISINYD H3S ONIY3Y
*[2ZHJ)1Z2@Wd 3114 Hlto  °Z@9LE@GL 3ISINYI H3S ONIY3Y
*(IHJ)2oW4 3114 Hld  °2B9BEBBL 3SINYI YIS INIH38

and principal strain

strains

Experiments began at ¢) 11.56 and d) 12.26.

principal

Amplitude spectra for

d.
direction.

Figure 13c,
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The angle of propagation of the strain wave may therefore be formed from
the amplitude spectrum for 6. Once againwe are lucky. The angle e is
remarkably constant over frequency (though it certainly doesn’t have to be)
and for the first experiment has a standard deviation of only 4.4° about

a mean which gives waves propagating from 200°. This agrees well with our
observations, the ship’s log, and the direction predicted roughly by the
earlier analysis, Later experiments give the same direction of propagation
though the onset of short period wave activity makes the spectra noisier and
increases the variance of wave direction with frequency.

The strain rosette analysis has therefore led to two conclusions: first
that the measured ocean wave spectra have a very small angular spread, and
second that the waves are propagating from a direction of about 200° irrespec-
tive of frequency. This is not too surprising Since during the experiment
the wind, waves, and swell directions coincided.

Our final interpretation of the strain data relies heavily on the work
of Cartwright and Longuet-Higgins (1956) who developed a statistical model
which could be used to find an estimate of a random function subsequent to
the measured record. The methodology is outlined very simply in Draper (1963)
and Tann (1976). Initially certain assumptions about the random function
have to be made:

(i) The function is considered as the “superposition of infinitely
many sinusoids of random phase.
(i) The spectrum is narrow. This is necessary to relate the distri-
bution of zero up-cross waves and the zeroth spectral moment
(Tann, 1976).

(i11) The random function is stationary.
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It is clear that conditions (ii) and (iii) are questionable. However, we
shall proceed on the understanding that any subsequent analysis can produce
only an order-of-magnitude estimate.

The fundamental motivation behind our work is that we know that our
floe did not fracture while we were measuring strain but did fracture within
an hour or so of our leaving. We may therefore compute the significant
strain for the recorded time series and call this our lower bound. The
upper bound may then be found using Tann's analysis to calculate a “projected
estimate” of strain over a time which includes the floe fracture. Both calcu-
lations are adjusted so that the strain is estimated in the wave direction
found by the rosette analysis with the understanding that the angle of
propagation does not change much with frequency.

The significant strains from each rosette give maximum principal strain
values of 44, 36, 34, 40 ystrain so we shall take our lower bound as 44 ustrain.
Following Tann's analysis to compute the maximum principal strain likely to

occur in three hours around the recorded data, we find

Emax(3 hour) = v8m ¥ 17

where ¥ is the solution of
=1InN- Tn 1 -
1 n [] - -2—11; (-I - € 4))] - (18)

In this equation N represents the expected number of zero up-cross waves in

three hours, that is

3xﬁpx60 ' (19)
z

N=
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From equation (17) we compute the maximum projected principal strain values
for the four experiments as 85, 69, 66, and 78 ustrain so that our choice
for the upper bound on surface strain is taken as 85 ustrain. Hence,

tentatively, we write
44 <.< 85 ustrain . (20)

Unfortunately, the authors know of no in situ measurements of fracture
strain for Bering Sea ice. The only Zn situ measurement where the surface
strain at fracture was measured directly took place in east Greenland in
1978 when a multiyear floe broke up due to the action of waves during an
experiment similar to those carried out in the Bering Sea (Goodman et al.,
1980) . A value of 43 ustrain was measured in this case though the instru-
ment used to record the strain is likely to have over-estimated its value
(Moore and Wadhams, 1980). Our bounds for Bering Sea ice then seem reasonable
given that the ice is thinner and warmer than the east Greenland floes and so
is able to bend more easily to the sea surface profile. As Goodman et aZ.
(1980) point out however, it is not possible to define either a universal
fracture strain ¢ or a universal strength for sea ice. This is because the
distribution and length of cracks within the material and its structure
control . Since sea ice 1S a composite material made up of brine inclusions
and drainage channels within a matrix of ice crystals, the sea ice structure
is closely linked to its growth history. Hence the value of ¢ measured on
the floe is strictly not applicable to sea ice in general. We suspect
however, that our measured fracture strain is valid for floes of a simi ar

growth history, as exist near the Bering Sea ice edge.
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DISCUSSION

A simple model for the flexural response of ice floes which neglects
the added mass, damping, and diffraction effects of a floating body has
been successfully applied to ice islands by Goodman et aZ. (1980). The
model calculates the flexural surface strain by first imposing the condi-
tion that the water motions do not see the floating rigid body, then allow-
ing the body to bend elastically on the pressure field. Despite its simpli-
city, the model gave good agreement with the ice island data. Using the two
fracture bounds calculated for our floe the Goodman et aZ. model has been
used to compute Figure 14. The graph is a plot of the wave steepness ak,
where a is amplitude and k . s wave number necessary to obtain surface strain
values of 44 and 85 ustrain for the floe as a function of incident wave
period. The figure may be divided into four zones: zone | where the strains
never exceed 44 ustrain so that fracture “can never occur”; zone Il where the
surface strain lies within the two bounds so that fracture is possible; zone
111 where the floe would immediately fracture; and zone IV where the wave
steepness ak exceeds 0.45, which is not possible for water waves (Kinsman,
1965). The presence of zone 1V has important consequences, namely that waves
of periods outside a range --3 s to .19 s can never break our floe since waves
of such steepness cannot exist oceanographically. It must be remembered
however that Figure 14 1is strictly only valid for our floe, since changes in
floe diameter and floe thickness have considerable effect on the surface
strain. As floe diameter increases, the surface strain will increase to an
asymptotic value which depends on floe thickness; as floe thickness increases,
surface strain decreases. Large floes of a given thickness can therefore

only exist so long as the forcing-wave amplitudes do not produce surface
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22. (cont. ) 85 ustrain. A discussion of the directionality of the wave
energy during the experiment is also given.



