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The Linear Decomposition of a Diagnostic

Shelf Circulation Model and Discussion of Alternate

Boundary Condition Formulations*

J. A. Galt

Glen Watabayashi

Pacific Marine Environmental Laboratory
Environmental Research Laboratories

National Oceanic and Atmospheric Administration

ABSTRACT. This report will investigate the characteristics of

the diagnostic model developed at PMEL and documented by Galt

(1975) and Watabayashi and Galt (1978). The model is partitioned

into density driven response and wind driven response components.

The density driven response is shown to consist of the flow

forced by the imposed density field and a minimum barotropic

mode required to reconcile the density driven flow with the regional

bathymetry. The wind driven response is associated with barotropic

currents forced by the set-up of the sea surface across the shelf.

Alternate techniques used to determine the appropriate boundary

conditions are herein investigated. A formal Green’s function

for the model equation provides useful insights into regional

dynamics and clearly illustrates the dual elliptic and parabolic

nature of the formulation. The model solution characteristics

are demonstrated on a complex, analytic shelf domain.

I. INTRODUCTION

In this report we will look into the formulation of the boundary con-

ditions and explore certain linear aspects of the diagnostic model equations

described byGalt (1975). In contrast to past reports on the diagnostic
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model (Galt, 1975; Galt, 1976; Watabayashi and Galt, 1978) that all concen-

trated on derivations, computer routines, and the study of circulation in

a particular area, this report will have a more formal approach and will

look at the decomposition of the equations into modes. We will discuss

the implications of various boundary condition specifications in terms of

these modes.

The basic derivation of the governing equations of the diagnostic model

was presented by Galt (1975) and the equations have been described in detail

in other places. Using the diagnostic model to study a particular area

raises questions that are not directed at the model formulation, but rather

at the choice of boundary conditions. The model formulation is a simple

combination of geostrophic  and Ekman modes, but the choice of boundary

conditions is complicated by two factors. The first factor is that the

model equations are second order due to a term which. is small compared to

the other terms in the dynamic balance. Because of this term, the boundary

conditions required to solve the equation come close to overspecifying

the flow; spurious solutions are a possible result. Secondly, when the

model is used in open ocean regions, further difficulty associated with

the boundary conditions results. The flow across the model boundaries is

generally unknown, so various approximations are made, and the choice of

these then leads to potential ambiguities in the solutions. The purpose

of this report is to review the various approximations used to obtain boundary

conditions in the past and to discuss possible ways’of specifying a less

arbitrary formulation for future studies.

Typically, whenever the diagnostic model is applied to a coastal region,

one edge of the model lies along the coastline, another edge runs offshore
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through deep water, with two lateral boundaries connecting these, from deep

water across the shelf to the shore. The c o a s t a l  b o u n d a r y  h a s  a  s t r o n g

p h y s i c a l  c o n s t r a i n t  a s s o c i a t e d  w i t h  i t  w h i c h  m a k e s  t h e  f o r m u l a t i o n  o f  t h e

b o u n d a r y  c o n d i t i o n s  a l o n g  t h e  c o a s t  r e l a t i v e l y  e a s y .  P h y s i c a l l y ,  t h e r e  i s

n o  f l o w  t h r o u g h  t h e  c o a s t . Along this coastal boundary four potential modes

of flow are allowed: baroclinic and barotropic geostrophic components,

Ekman modes at the surface, caused by wind stress, and at the bottom, caused

by frictional drag. Setting the four of these to a net sum of zero involves

a mixed Neumann type (Courant and Hilbert, 1962) boundary condition. The

offshore boundary is typically located in deep water, a region where the

classical dynamic height approximations tend to be valid. As a standard,

we have simply imposed a dynamic height condition that allows for the flow

to be zero at some fixed level, typically 1200 meters. To impose this boundary

condition, we simply balance the barotropic  and baroclinic geostrophic modes

such that .there is no flow at this depth.

Now we consider the two model boundaries which run normal to the coast.

When the model was initially used, it was assumed that winds along the coast

tended to set up the sea surface or push it down across the continental

shelf by a mechanism suggested by Beardsley and Butman (1974). By assuming

that the sea surface elevation across the shelf was represented by a simple

wind dependent hinge, we were able to obtain solutions for the Northeast

Gulf of Alaska region (NEGOA). The results of these initial studies appeared

in the circulation study of the continental shelf off the Copper River Delta,

Galt (1976). A moderate refinement on this study was to specify the inflow

boundary condition of the flow along the eastern boundary as a simple hinge,

adjusting the left hand boundary by hand so that a smoother set of streamlines

was obtained along the outflow or western boundary. This was an admittedly



ad hoc approach to the problem, but the result did show some improvement.

Galt and Pease (1977) presented flow patterns from this study using this

method to simulate drift trajectories for a number of different wind con-

ditions.

When the diagnostic model was applied to the

Alaska, a problem arose with

Kodiak region the topography

will not reflect the complex

the use of a simple

is so complex that a

circulation occuring

area around Kodiak Island,

hinge concept. In the

simple hinge approach

over the many banks and

canyons that cut across the shelf. Hence we made use of the fact that a

reduced inviscid set of model equations defines characteristics of a first

order partial differential equation. These characteristics are very closely

related to f/d contours where f is the Coriolis parameter and d is the

depth. Along these contours the surface elevation is governed by a simple

one-dimensional form of the differential equation. Using this method we

generated a set of boundary conditions such that the inflow boundary was

specified as a simple wind dependent slope, and the outflow boundary was

related to the inflow boundary by using the characteristics that were defined

by the simplifed model equations. This approach led to circulation patterns

which could then be related to wind conditions. Using this parameterization,

a series of different cases was investigated; then the predicted currents

from the model were

from four different

were presented at a

This characteristic

ccxnpared to the scatter seen in current meter records

locations in the Kodiak area. -

recent American Geophysical Un”

technique was also used in the

he results of these studies

on meeting (Galt, 1977).

NEGOA area, and the

results of these studies indicated the existence of several distinct domains

within the NEGOA area that seemed to be strongly related to each other,

(Royer, 1978). A final improvement in the combination hinge and characteristic
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technique for determining boundary conditions was

sea surface slope inversely proportional to depth

the introduction of a

to replace the hinge.

This modified cross shelf profile meant that steeper sea surface slopes

were obtained in shallower water along the coast assuming uniform wind,

which tended to give a more realistic appearance to the current patterns,

these techniques were applied in the Kodiak and NEGOA regions.

These techniques were characteristically applied to specific regions

to obtain flow patterns for particular studies. They are also all derived

in a heuristic way, which is typically labor intensive. The boundary con-

ditions were tried; if they did not give reasonable results, alternate form-

ulations were used. Although these empirical studies gave interesting current

patterns, and in some cases appeared to accurately reflect direct observations, we

still have reason to be skeptical of the results. In particular, location

i n d e p e n d e n t  t e c h n i q u e s  m i g h t  b e  d e r i v e d ,  r e f l e c t i n g  a  m o r e  s o l i d  c o u p l i n g

of the fundamental physics to the model. Additionally, we are searching

for a more formal way to approach the boundary problem as it relates to

the diagnostic model.

In the next section we will discuss the decomposition of the model

equations into a purely baroclinic mode, a minimum barotropic mode needed

to satisfy continuity, and a barotropic  wind driven mode. These various

modes will be related to the kinds of data needed in order to solve the

respective problems and to the number of degrees of freedom that are expected

in the solutions. Next, we will discuss the types of boundary conditions

to be imposed on each of the separate modes and ways to combine them to

give a more general solution that would reflect the given density fields

as well as the geometry of the specific region being studied. From these

discussions we will derive a consistent approach for determining the boundary
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conditions in a general study area.

In addition we will be able to determine the flew patterns that are

likely to result from these particular sets of boundary conditions and

relate them to observational data that can be obtained from CTD measurements

and current meter data. To the extent that observational data do not fit

the modal decomposition predicted by the model, we will also derive an

objective way of determining whether or not the assumed boundary conditions

are correct for the region.

II. Decomposition of the Diagnostic Model

The diagnostic model equations are linear. Therefore it is possible

to decompose the governing equations into a number of different parts,

each of which can be evaluated individually and then added up to give the

total solution. The impetus for decomposing the model equations has come

frcm two different problems. First of all, the simple hinge type boundary

conditions that were used in a number of earlier studies led to a difficulty

when the wind velocity approached zero. Under these conditions, the sea

surface slope across the shelf also went to zero, thus, there was no baro-

tropic transport across these particular boundaries. Nonetheless, the

density field which was already specified gave a baroclinic transport that

could be balanced only by invoking some rather exotic circulation patterns

in the bottom Ekman mode. These results clearly indicated that some minimum

barotropic mode had to exist to satisfy continuity in the presence of a

non-uniform density field. A second reason for suggesting a decomposition

of the model equations became apparent during an investigation of the number

of degrees of freedom to be expected in the general class of solutions.

Since the equations are linear, the number of degrees of freedom to be

expected must be related to the number of degrees of freedom that are allowed
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in specifying the boundary conditions. The hinge formulation introduced

a single wind parameter; therefore, any similarity type distribution of

sea surface elevation across the shelf would always lead to a single pattern

in the flow. In order to better understand these patterns, we broke the

boundary conditions into inhomogeneous parts related to the density field

and a homogeneous and/or similarity part related to the set up by the wind.

To see that this is possible, we may begin by looking at the diagnostic

model equation.

N2V2E - J(g,d) + NlN2v2a - NIJ(a,d) - k.vx~ = O

where:

c
=

d =

k“vx~ =

N1 =

N2 =

surface elevation, the dependent variable

depth

the curl of the surface wind stress

non-dimensional stratification parameter

non-dimensional bottom friction parameter.

A complete derivation of this non-dimensional form of the vorticity equation

is given by Galt (1975). This can be separated into two parts such that

&=cl+52

where these new variables satisfy the following equations:

N2v2&l - J(Cl,d) + NlN2v2a - NIJ(a,d) = O

which is referred to as the density-driven response

N2V2C2- J(E2,d) - k“vx~ = O

which is referred to as the wind-driven response.
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Next we m u s t  c o n s i d e r  t h e  b o u n d a r y  c o n d i t i o n s  n e e d e d  t o  s o l v e  t h e s e

e q u a t i o n s . To do this we will look at a typical model domain consisting

of a coastline, shelf and deeper offshore section (see Fig. 1). The various

segments of the boundary can be described in the following manner:

Segment a) This coastline boundary satisfies the physical condition

that the net flux through the coast must be zero. To do this we simply

sum the barotropic, baroclinic, surface Ekman and bottom Ekman modes in

a non-dimensional form (Galt, 1975).

where K i s  a  u n i t  v e c t o r  normal t o  t h e  c o a s t  p o i n t i n g

a unit vector given by ~x R= ~, where ~is positive

mixed Neumann type boundary conditions involving both

derivatives of the dependent variable.

offshore; and 3 is

up. These represent

normal and tangential

Segment b) This offshore or deep water boundary is assumed to be deep

enough so that the concepts appropriate to classical dynamic heights can

be used. To implement this in the diagnostic model we simply set the sea

surface elevation at any station deeper than the level of no motion to:

c = -Nla

Segments c & d) These cross shelf boundary regions require special

attention. By specifying the surface elevation along this boundary, we

supply Dirichlet type boundary conditions and determine the barotropic

flow normal to the boundary. These nonhomogeneous conditions have been

approximated in a variety of ways; to understand the rationale behind each

potential problem we must look into these in some detail.
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Basically the sea surface’s departure from a level surface is caused

b y  b o t h  thermohaline f o r c i n g  a n d  w i n d  f o r c i n g .  F r o m  a  c o n c e p t u a l  a n d  c o m -

p u t a t i o n a l  p o i n t  o f  v i e w  i t  i s  u s e f u l  t o  s e p a r a t e  t h e s e  i n t o  a  n u m b e r  o f

independent cases or modes. Before doing this, however, it is useful to

outline the problems that are likely to occur if the boundary values are

incorrectly specified.

In the model equation both geostrophic and Ekman flow are allowed

and must be balanced to maintain continuity of mass.. Moreover, around

the boundary of the model most of the flow is determined by the independent

variables (density, wind stress) or by the boundary conditions. In par-

ticular, the density data determines the baroclinic component of the geo-

strophic flow through the boundary; and the specification of the sea surface

elevation determines the barotropic component of the geostrophic  transport

through the boundary. If these do not balance so that there is no net

flow through the boundary, the model will establish a secondary flow in

the bottom Ekman layer to complete the balance. To do this a strong baro-

tropic current must flow parallel to the boundary. To get a better under-

standing of how this takes place, we may look at the following simple example

(Fig. 2)

Model Domain: (assume y axis pointing North)

O:x< z—

(l~ycm—

depth : d = -(2-:)

u-field: a = ax + by

wind field: T = O

Substituting these into the governing equation gives:
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Boundary

from the

.

conditions will specify that flow enters from the right and exits

left of the domain, i.e. ;

To solve this we will use the homogeneous part of the equation to satisfy

the non-homogeneous

c = g’ + g“

where E’ satisfies

part of the boundary conditions. Thus

subject to the boundary conditions given above.

part of the decomposition is easily seen to be:

[’ ‘ Y

The

equation

The solution for this

r e m a i n i n g  p a r t  o f  t h e  s o l u t i o n  w i l l  s a t i s f y  t h e  f u l l

subject to the homogeneous boundary conditions, i.e.

&“(o,y) = ~“(z,y) = ~“(x,o) = t“(x,m) = O

non-homogeneous

.?

This differential equation and boundary conditions are well known in the

field of oceanography, as they are identical to the one proposed by Storrunel
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(1948) to represent general ocean circulation. For this secondary barotropic

flow, the surface elevation contours will also be streamlines for the

surface current (Fig. 3). This pattern shows a strong western boundary

current analogous to general ocean circulation with the depth gradient

taking the place of the B term and the baroclinic-bottom  interaction term

replacing the wind stress curl.

Several general characteristics of the model can be demonstrated from

this simplified case. As previously stated the secondary flow is the result

of a continuity imbalance. The basic barotropic mode g’ = y is nondivergent

over the entire domain: The baroclinic forcing, on the other hand, is

divergent. The density field will induce a flow, with both north and west

components, which carrfies water from deep to shallow regions. This requires

a secondary flow that results in a southerly drift and/or divergence in

the bottom Ekman layer. Me can see that this clockwise flow will support

a bottom Ekman layer that transports water out of the domain, primarily

through the strong western boundary current region. This strong asymmetry

is another general characteristic of the secondary flow generated by the

model. The coefficient N2 is small; as a result, the leading and highest

order term typically will not contribute significantly to the balance,

except in boundary regions where the derivative in the independent variable

can become large (Cole, 1968). For most of the interior and right hand

boundary regions (to the right when facing from deep to shallow) the primary

balance within the model is between the J(g,d) term and the forcing terms.

From this we may deduce two additional points. First, as the bottom friction

(=N2) becomes smaller, the western boundary current becomes more narrow

and more intense. Secondly, for most of the model domain,

is totally dominated by the right hand boundary conditions

reduced equation. The intense western boundary current is

the solution

and first order

clearly an artifact
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of imposing additional boundary conditions, required by the second order

equation, but redundant to the dominant first order dynamics. This explains

the problem of picking appropriate boundary values across the c and d regions;

they are coupled and generally cannot be set independently without expecting

to get large, extraneous secondary flows.

With”the problem demonstrated, we may now consider several techniques

that can be applied in a systematic way to determine appropriate boundary

values and define the degrees of freedom, or independent patterns, that

can be expected from the model.

We will begin by considering the density driven response in the model,

i.e.;

N2v2t - J(g,d) + NlN2v2a - NIJ(a,d) = O

To better understand how to proceed we will look only at what we know to

be the dominant physics~ i.e., the first order equation that remains when

the bottom friction is negligible.

J(E,d) + NIJ(a,d) = O

This corresponds to simple

Consider a triangular

sea surface elevation, and

geostrophic flow over variable bathymetry.

region of the ocean in which the depth, the

the vertical integral of the density can be

approximated as linear functions of x and y. Thus if we define

o

a =

~
pdz

d

we may write

a = Al$l + A242 + A3$3

d = Dl$l + D242 + D343

c
= zl+~ + Z2$2 + z3413

alpha field

depth

surface elevation
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where

‘$1 = alx + bly + c1

‘$2 = azx + b2y + C2

43 = a3x + b3y + C3

are the interpolating weight factors or shape functions associated with

the triangle in question. (Zienkiewicz, 1971 and Fig. 4). The gradient

in the u-field and thus the gradient in the bottom pressure will be:

Where the indicated three component vectors, A, a and b, are known from

t h e  g e o m e t r y  a n d  f r o m  t h e  d e n s i t y  d a t a  g i v e n  a t  t h e  v e r t i c e s .  F o r  t h e

moment we will refer to gvci as the baroclinic component of the pressure

gradient where g is the acceleration of gravity. Given this assumption,

we may define an internal velocity component, or the velocity at the bottom,

due to the density variations as

This velocity component will be rotated 90° to the left of ~a. We may

now look at the depth gradient which can be written as:
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~d =

=

In order to

the bottom,

an isobath.

G)z * ‘~]~

(D.a)~+ (D. b)~

satisfy the continuity requirement that there be no flow through

we must require that the net horizontal bottom flow be along

Thus there is a minimum barotropic mode that. must accompany

the internal velocity VI unless vu and vd are CO-~inearO This minimal

external or barotropic bottom velocity component will be parallel to the

depth gradient and be given by (Galt, 1975, eq. 21)

v= % s-(v~*l~dl l~d[
EM

9
= fp[(D~a)2 + (D. b)z] [( A” b)(D. a)2 - (A:a)(D”b)(D*a)]  ;

+ [(A-b)(D”a)(D”b)  - (A*a)(D*b)2]~

This can be related to the sea surface elevations as follows:

where

(z-a) = ~ [( A” b)(D. a)(D. b) - (A. a)(D. b)2].—
[( D.a)z + (D. b)2]

(z-b) = ; ~(A”b)(D”a)2 - (A.a)(D. b)(D.a)]
[( D.a)Z + (D. b)z]
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and, with no loss of generality, we can set

21=0

These three equations can now be solved for the coefficients Z1 Z2, and
s

Z 3 to  f ind the minimum barotropic mode.

It can be seen that the minimum barotropic mode is equivalent to speci-

fying the component of the sea surface slope along an isobath, i.e., this

determines the barotropic velocity normal to the depth contours. From

a graphical viewpoint, the three conditions above are equivalent to placing

v e r t e x  1 of the t r iangle  in  the x-y  p lane and then rotat ing i t  around the

vd axis until the slope is sufficient to give V EM (Fig. 4).

Thus far we have determined only one component of the sea surface

slope. It is also possible to rotate the solution plane for the sea surface

elevation around the axes formed by the isobath. This can be done indepen-

dently of the rotation around vd, physically it will result in a barotropic

current that is parallel to the isobath, and thus have no effect on the

continuity balance. This degree of freedom can be used to obtain a solution

throughout a region composed of a number of triangular elements connected

along an isobath or characteristic (Fig. 5). Specifying a slope for triangle

1 is equivalent to specifying the flow along the isobath and the single

boundary condition needed to solve the first order partial differential

equation. Triangle 2 can be rotated around the isobath until its two common

vertices with triangle 1 match up, i.e., the s o l u t i o n  p l a n e  f o r  t r i a n g l e

1 and for triangle 2 would be continuous along the common side AB. In

a similar manner triangle 3 is rotated around the isobath and matched up

along the common side with triangle 2. This process can be carried on

through triangles as we follow an isobath or characteristic.
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In order to get a better understanding of what is meant by this minimum

barotropic mode, it is necessary to look into the physical implications

of such a flow. For’s singJe triangle this mode is clearly the barotropic

component needed to align the bottom flow with the isobaths. This is an

absolute minimum current; any other barotropic currents that are consistent

with the density field and bathymetry will have components of the current

along the isobath. These other cases would subsequently result in a sea

surface slope with higher potential energy. When moving from one triangle

to another along an isobath, continuity of flow across the boundary will

determine the along isobath component of flow.

Why should we be interested in a sea surface distribution with minimum

potential energy? We may note that this problem was considered by Wunsch

(1977) in a different context. He discussed minimum energy solutions subject

to a variety of conservation constraints, but none of his constraints happened

to be bottom flow following f/d contours. He did, tiowdver, recognize this

possibility. To answer the question in the context of the present problem,

we recall that during the decomposition of the governing equation the density

driven response did not include any wind forcing. Under these conditions

the wind set up would relax and the sea surface would tend to decrease

to the lowest energy level consistent with the dynamics represented by

this component of the equations.

The next problem is to solve the density response partition of the

diagnostic model equations, subject to the constraints that the surface

elevation should be at a minimum potential energy and that there are no

strong currents generated parallel to the boundary. Following this, we

look for solutions to the wind driven response partition of the problem,

assuming homogeneous water and some similarity profile for the wind set
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up. The linear sum of these two solutions will be the total flow for the

diagnostic model problem.

III. Density-Driven Response

The following is an investigation into the density driven response

of the model. This will include the baroclinic mode and the minimum baro-

tropic mode required for continuity. There are several ways to approach

this problem, and included are outlines of three of them. Each way represents

a somewhat different approach corresponding to various degrees of mathematical

rigor. Obviously the computational effort required is quite different

for each one of these and a comparison of results is of considerable practical

interest.

3.1 Minimum Potential Along Characteristics

The coastal boundary segment previously Iabelled (a) (Fig. 1) must

satisfy the “no net flux” condition. The deep water segment (b) will be

represented by dynamic heights assuming a level of no motion on the order

of 1 0 0 0  - 1200. The remaining undete~ined boundary values are for the

segments (c) and (d) connecting the offshore and coastal regions. To evaluate

these we will make use of the reduced invicid form of equation that represents

the dominant physics, i.e.;

J(&,d) = -NIJ(a,d)

At each boundary point along these segments, the surface elevation

is set to an unknown constant c. From this point we will integrate along

a characteristic, satisfying the relationship obtained from the above equation:

Once the depth contour, or characteristic, is traced all the way across

the model, the initial constant is adjusted to yield the minimum potnetial



energy for the surface profile along that path. A graphical interpretation

for each triangle along the isobath is shown in Figure 6. The potential

energy along this path can be written as:

6s{ .g

PE =
< JJ

pgz dzds

0 0

This gives

which leads to

Summing these contributions for each of the triangles connected by the

isobath with the understanding that &l = 0, gives

470



To obtain the minimum value for the potential energy along this path we

differentiate with respect to c and set the result to zero, giving

Once this is done for each of the points along the (c) and (d) boundaries,

the interior solution for the full equation should give a minimum potential

energy surface except for the contribution from the small bottom stress

terms. A closer look, however, reveals several unresolved ambiguities

and potentially degenerate cases.

This minimum potential energy approach will give elevations along

segments (c) and (d) relative to other members of this set, but it does

not suggest how to connect these sections to the offshore segments whose

elevations are also only defined relative to other members of their sets.

To resolve this problemwe have adopted the convention that the offshore

boundary segment be adjusted up or down by a constant amount so that the

innermost line of stations (whose relative position is given by dynamic

heights) is at a minimum potential energy relative to the z = O level.

This same constant offset is then applied to the entire deep water region.

The degenerate cases that must be considered involve places along

the boundary where neighboring points are at the same depth (characteristic

runs along the boundary) or where the boundary point is a local maximum

or minimum in the depth (characteristic does not penetrate the model domain).

We set boundary values at these points by using a quadratic interpolation

that fits a curve through two points on one side of the unknown point
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and through one point on the other side. This procedure is done from both

sides and averaged as shown in Figures 7 and 8.

We summarize this procedure as follows;

1) Coastal boundary points are set relative to each other using

a “no net flux” constraint.

2) Deep water boundary points are set relative to each other by

assuming level of no motion and using the dynamic heights method. In addition

they are offset so that the innermost line of deep stations is also set

at a minimum potential energy relative to z = O.

3) Cross-shelf boundaries are set relative to each other by minimizing

potential energy along characteristics, subject to the reduced form of

the density-driven equation.

4) Degenerate cases are resolved by using interpolation techniques.

Once these steps have been done, the complete density-driven response

is calculated giving a flow field including the effects of bottom friction.

This solution can be expected to approximate the minimum potential energy

solution (or most relaxed set-up) consistent with continuity considerations,

the given density field, and the bathymetry.

3.2 Green’s Function to Minimize Regional Potential Energy

In this section we will derive a technique for obtaining a complete

solution to the minimum potential energy, density-driven response. To

do this we will make use of the linearity of the diagnostic model equation.

We start with the general density drive equation:

N2V2{ - J(&,d) + N1N2v2a - NIJ(a,d) = o

and consider the following series of problems:
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1) The solution to the above equation sub,ject  to the following boundary

c o n d i t i o n s :

a) no net flux through the coastal segment

b) deep water boundary segment given by dynamic height

and assumed level of no motion plus a constant offset

c) all of the cross-shelf boundary values set to zero

2) The solution to the homogeneous equation is

N2V2E - J(&,d) = O

subject to the following boundary conditions:

a) no net flux through the coastal segment

b) all remaining boundary points are set equal to zero

except one which is

This second problem gives the

which represents the response

given a unit magnitude.

numerical solution to the Green’s function

of the system to a unit impulse from a par-

ticular boundary point. If there is a total of M boundary points along

the cross-shelf boundary segments, we repeat problem two above with each

point in turn acting as a source point for the Green’s function.

In all we obtain M+l solutions for each nodal point in the model plus

the contribution from the variable density forcing terms with dynamic height

values set offshore. After doing this we write the total solution as

the linear sum

where the subscript + indicates those of Green’s functions with which
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the solution is associated, the superscript tj indicates the nodal point

value, and c; is the ‘as yet’ undetermined amplitude associated with each

of the Green’s functions.

We will now determine the values of the Ci’s such that the potential

energy for the total solution is a minimum. To do this we will consider

a triangle with vertices Z, m, and n and area A. Mith the shape functions

$-p $m$ and +n we define the surface elevation as

E = ~jz +

The potential

zero height (where

IP E =

energy of the surface relative to a flat surface at

the integration is over the triangle) is given by

J/
E
p g z d z d y d x. .

dx dy ‘O

1
\

‘yP9 //(2dx dy
L

Substituting our

PE=$pg /
dx

dx dy

expression for the surface elevation into this gives

J
2  2+E +n2+2Ez6m424m(cz2$z2+Em +m

n2
+2EzEn414n+2cmCn~m4n) dx dy

dy

To evaluate the integrals of these shape functions, we may use the formula

given by Zienkiewicx  (1971, page 120, eq. 7.34) which states

and the above integral becomes
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Substituting our linear sum representitisn for & into the above gives

Expanding this out gives

This is once again the potential energy associated with a single triangle

as a function of the Green’s function contribution from each boundary

point along the cross-shelf segment. The total potential energy for the
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region will be the sum of this expression over each triangle. TO minimize

this we must differentiate with respect. to each of the C’s and set the

resulting system of equations to zero$ i.e.$ for ~ =0,1, 2,...M

This gives M+l equations in the M+l unknown C’s, which can be written

in the matrix form.

Ac=I’

Where

And
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and where it is understood that these terms are summed over all the triangles,

Solving this system for the Ci’s, we then obtain the minimum potential

energy solution for the density-driven response partition of the diagnostic

model.

3.3 Natural boundary conditions for the Finite Element Solution

The third method of estimating the boundary conditions for the density-

driven response to the model is by far the simplest and depends to some

extent on serendipity. The basic procedure can be described as follows:

The density-driven response partition of the diagnostic equation

is solved using the finite element technique and first-order linear shape

functions subject to the following conditions:

a) Along the coastal boundary segment a zero net flux condition

is specified

b) Along

using

c) Along

after

the deep w a t e r  b o u n d a r y  s g e m e n t  t h e  e l e v a t i o n s  a r e  s e t

d y n a m i c  h e i g h t  c o n s i d e r a t i o n s

t h e  c r o s s - s h e l f  b o u n d a r i e s  n o  b o u n d a r y  c o n d i t i o n s  a r e  i m p o s e d

t h e  f i n i t e  e l e m e n t  m a t r i x  i s  a s s e m b l e d .

Surprisingly, a solution is then obtained without giving the elliptic

problem explicit boundary conditions surrounding the domain. Furthermore,

the resulting flow

obtained using the

pattern appears to be very close to the one that was

technique of minimizing the potential energy along

a characteristic or using the more complete Green’s function minimization.

To understand how this takes place we must first consider the finite element

(FEM) method that is being used along with its bases set of functions.

Next we will investigate the physical implications of these mathematical

conditions and discuss why these should lead to a low or minimum potential

energy state.
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We s t a r t  b y  o b s e r v i n g  t h a t  t h e  d i f f e r e n t i a l  o p e r a t o r  r e p r e s e n t e d

by the diagnostic model equation is second order; we therefore expect

the solution to”come from the general function space of twice-differentiable

functions. On the other hand, the interpolation functions which are used

to make up the solution function space are only linear and piecewise con-

tinuous. This presents no particular problem in that the actual Galarkin

formulation that is used to assemble the FEM solution matrix is in the

“weak form” where higher derivatives in the operator are transformed to

boundary constraints via integration by parts. When this is done, certain

essential and natural type boundary conditions are identified (Strang

and Fix, 1973). In the absence of the specification of essential boundary

conditions (Dirichlet in this case) the solution will tend to optimize

its approach to the natural boundary conditions (homogeneous Neumann type).

In essence, when

of the boundary,

elements and the

no boundary conditions are specified over some segment

the normal derivative of the FE solution using first-order

weak Galarkin form will tend to go to zero.

The sea surface slope normal to the boundary of the model corresponds

to a barotropic flow along the edge of the domain. This type of circulation

pattern has been previously identified as resulting from continuity mismatches

around the boundary. It is at

type boundary conditions along

least plausible that by approaching natural

the boundary segments crossing the shelf,

the secondary flows will be small in some sense. Thus we can expect the

total solution, constrained with essential conditions only around the

deep water segment and the physically realistic non-flux conditions along

the

the

coast to approach a minimum energy state.

In this section we have presented three different approaches to solving

density driven response to the diagnostic model equations. Each rep-



r e s e n t s  a  s o m e w h a t  d i f f e r e n t  p o i n t  o f  v i e w  a n d  r e q u i r e s  d i f f e r e n t  a m o u n t s

o f  c o m p u t a t i o n a l  e f f o r t . These are investigated in section V to add

formalism to the understanding of the model and to standardize the approach

to its use. This is in strong contrast to previous explorations where

trial and error and oceanographic intuition were major factors in model

applications.

IV. Wind-Driven Response

In this section the wind-driven response of the model is considered

by solving the partition of the diagnostic equation given by

N2V2C - J(e,d) - k“vx-c = O

This equation represents the wind forcing of the model region. The wind-

driven effects can be conveniently divided into two separate components.

The first of these is the surface Ekman flow, which enters into the vorticity

equation as the curl of the wind stress (i.e., the local wind forcing

caused by the winds within the model region. ) The second category of

wind forcing can be referred to as global. This is the result of large-

scale wind patterns and is transmitted to the model through the set-up

of the boundary points. Typical patterns associated with this process

are modeled by imposing a slope across the continental shelf region that

is proportional to the alongshore component of the wind stress. The assumed

mechanism hypothesizes that the Ekman transport pushes water up against

the coast inducing a barotropic set-up and subsequent alongshore currents.

Such behavior has been qualitatively observed in many continental shelf

areas and quantitatively documented by Beardsley and Butman (1974).

Looking more closely at the local wind forcing, we find that there

are two ways in which the model can be forced directly by winds within

479



the model domain. The first of these is”through the wind stress curl,

which is small for typical length and time scales (100 km and days).

For most cases, the open ocean, wind-driven convergence or divergence

is a secondary

The second way

convergence or

contributor to the mass balance, or sea surface set-up.

that the local winds drive the model is through the mass

divergence at thecoastlinei  This effect enters through

the n o  n e t  f l u x  b o u n d a r y  c o n d i t i o n s . This direct forcing of the model

covers all possible ways in which winds effect the dependent variable,

i.e., sea surface elevation and subsequently the geostrophic currents

at the surface. However, these effects do not include all of the wind-

driven currents. Superimposed on this surface geostrophic current is

the non-divergent component of the Ekman layer flow which is added onto

the diagnostic model solution and clearly depends on local winds.

The global wind forcing to be used in the model presents two distinct

problems. The first is theoretical, the second numerical. It is known

that regional winds set up the sea surface. The details of how the physical

processes operate in continental shelf regions with complex bathymetry

and stratification are essentially unknown. B e c a u s e  o f  t h i s ,  v a r i o u s

assumptions have been made and tested with the model. The measure of

success of these assumptions is a comparison of model results to current

meter observations or Lagrangian drifter data. To date, only the simplest

one parameter similarity profiles have been used, specifying either a

uniform slope across the shelf or a slope inversely proportional to the

depth. In these cases using the complete model, the density-driven and

wind set-up effects were not clearly separated, and it was difficult

to determine the actual degrees of freedom represented by the model or

specified in the boundary formulation. The natural way to specify these
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wind-driven elevation values across the shelf would be to have sea surface

or bottom” pressure measurements from a series of gages. Using this data,

an observed cross-shelf profile could be used to drive the model. The

pressure data would need to be filtered to remove non-geostrophic components

In addition it would be encouraging to find the appropriate geostrophic

scale signal falling along a simple one-parameter cross-shelf profile.

When trying to key the wind-driven model response to various cross-

shelf profiles, it is important to remember that the system is linear,

For example, with n data points across the shelf, n different emprical

orthogonal modes can be derived from the records. Than all possible profiles

can be represented as linear combinations of these few model profiles.

Thus, these studies can expect the most productive output by concentrating

on empirically derived profiles.

An alternate technique for keying the wind-driven response of the

model would be to develop a Green’s function for various slope conditions

between nodal points across the shelf. Methods would be similar to those

presented in the preceding chapter and could be put together in linear

combinations to represent any given cross-shelf profile.

The second general problem associated with the global wind forcing

in the model is numerical and was disucssed  in section III of this report.

As mentioned, the boundary layer nature of the governing equation and

the dominant first-order physics associated with the bathymetric interaction

term make it essential to consider the coupling between the right-hand

and left-hand cross-shelf boundary segments. The two opposite boundary

values must be related

of extraneous boundary

possible approaches to

along bathymetric contours to avoid the presence

currents in the secondary flow. There are several

this problem; as discussed previously. The first



approach is to specify the surface elevation at only one point on each

isobath and determine the second boundary value by using the reduced equation

and integrating along the characteristic. The second approach makes

use of the natural boundary condition behavior of the finite element solution

technique. In this case, the elevation would be set on each characteristic

and the remaining boundary conditions would remain unspecified to be deter-

mined by the solution technique so as to suppress extraneous boundary

currents.

As a final point on the wind-driven response in the model, this par-

tition of the model equation does not depend in any way on the density

data. The initial finite element grid or nodal point positions were deter-

mined by the locations of CTD stations which supplied the density input.

Commonly ship t i m e  a n d  w e a t h e r  c o n s t r a i n t s  l i m i t  t h e  s t a t i o n  c o v e r a g e ,

a n d  s p a t i a l  d i s t r i b u t i o n  i s  n o t  a s  d e t a i l e d  a s  o n e  m i g h t  l i k e  f o r  r e s o l v i n g

ccinplex bathymetry. With the density- and wind-driven responses of the

model partitioned as indicated, it is not necessary to restrict both par-

titions to the same finite element mesh. In fact, the wind driven response

can be run once for any region on a grid as dense as needed to resolve

the relevant topographic features.

V. Model Test

In order to get a better understanding of the model decomposition

the model was tested on a relatively complex domain. Rather than go to

a specific site and attempt to find data, a region was hypothesized with

analytic bathymetry. The topographic features of the region are: a broad

continental shelf, a bank or shoal region on the shelf, and a large submarine

canyon. The actual model bathymetry is the sum of all these features
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expressed in analytical non-dimensional form as follows:

.d(x,y) =

+

+

Do - ‘1
(D2+exp(D3yZ  ) ) ‘D” m“

Dqexp(-D5(x-xo)2  - DG(Y-YO)2)

D9exp(-D7(y-Y1)2  - DIO(x-x1)2)(l-exp(D12yk)  COS(D8(X-X1))

Figure 9 shows the triangular grid system that was used on the 5 x 5 (non-

dimensional units) domain. This corresponds to 143 stations with an increased

density of points on the western boundary to avoid any resolution problems

that might occur with the

a bathymetric contour map

will refer to this as the

s e c o n d a r y  b o u n d a r y  c u r r e n t s . F i g u r e  10 s h o w s

p l o t t e d  f r o m  t h e  s t a t i o n  l o c a t i o n  d a t a .  We

GS (Gondwannaland  S h e l f )  d o m a i n .

The density field will be given by a simple linear function of position

at the surface that goes to a constant density at great depth, i.e.,

P P.= -(aPIX +  6P2Y ~ 6P3) exp(Dl,3z)

This can be easily integrated from some depth z to the surface to give

.
a, I.e.s

I
o

(dPlX +  aP7Y ~.~~ (1 -  exp(D z ) )
a= pdz = -pOz -

z D13 1 3

From this the gradients in the ~ field and bottom pressure forces due

to the baroclinic terms will be

&=- @- (1-exp(Dlsz))
ax D13

&=- ~ (1-exp(D13z))
ay D13



Table 1 gives the non-dimensional values of the various depth and density

coefficients used in the GS region parametrization. This relatively

s i m p l e  f o r m u l a t i o n  r e t a i n s  a n a l y t i c  p r o p e r t i e s  y e t  r e q u i r e s  s o m e  cross-

isobath flow in the minimum barotropic modeg thus it will be an informative

example for the present study. Figure 11 shows the alpha field derivations

plotted from the station data.

To round out the Gondwannaland Shelf domain data set, it is assumed

that a number of pressure gages and meteorological data buoys have been

deployed and have established the wind response characteristics of the

region. For the present example this has reduced to the following: the

sea surface elevation for any point along the coast (corrected for tide

and barometric pressure) is a linear function of the alongshore component

of the wind stress with the amplitude of the variation being roughly pro-

portional to the width of the shelf. Then, for the purpose of this illus-

tration, a linear bathystrophic forcing is hypothesized. In this the

alongshore component of the flow is proportional to the alongshore component

of the wind speed with the onshore/offshore component of the sea surface

elevation in geostrophic balance with the alongshore current.

Given this GS domain clata, we May now explore the re9ional circulation

using the decomposition techniques outlined in the previous two sections

of this report.

Starting with the density-driven response we will seek the baroclinic

mode along with the minimum barotropic mode required for continuity.

Three different methods of solution are suggested, and each will be in-

vestigated. The assumed level of no motion offshore will be taken as

1,000 m, thus the two outermost lines of stations will be set using dynamic

height considerations.
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The t h r e e  m e t h o d s  a r e :

1) To obtain the boundary values using the minimization of potential

e n e r g y  a l o n g  c h a r a c t e r i s t i c s  w e  p r o c e e d  a s  o u t l i n e d  e a r l i e r . The surface

elevation associated with the minimum barotropic mode for this case is

shown in Figure 12a.

2) To solve for the density-driven flow using the Green’s function

approach we must calculate a number of different components to the flow.

The first is the component forced by the offshore dynamic heights. This

solution is shown in Figure 13a and can be thought of as the basic baroclinic

forcing. Added to this will be a linear combination of the other Green’s

functions components. The first will be the constant elevation for the

offshore region which corresponds to offshore adjustment necessary to

minimize this region relative to the z = O level. This is shown in Figure

13b. The other Green’s function components are all related to a unit

displacement at some boundary point. An example is given in Figure 13c.

Following the techniques outlined previously, the appropriate Green’s

function components are scaled and added to minimize the potential energy

of the solution. The resulting surface elevation for the minimum barotropic

mode is shown in Figure 12b.

3) The third technique for estimating the minimum barotropic  mode

is to use the finite element natural boundary condition formulation.

Figure 12c shows the surface elevation predicted by the natural boundary

condition case.

Figure 14 shows the surface velocity for the same three cases as

seen in Figure 12. Figure 15 shows the corresponding bottom velocities

for the three techniques. This differs from the surface currents by the
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baroclinic  s h e a r  t h a t  i s  i n t r o d u c e d  b y  t h e  v a r i a b l e  d e n s i t y .

We now turn our  at tent ion to  the wind-dr iven response of  our GS r egion.

As p r e v i o u s l y  s t a t e d ,  t h e  a s s u m e d  i n p u t  d a t a  s u g g e s t s  a  b a t h y s t r o p h i c

balance where the alongshore component of the wind is linearly related

to a uniform sea surface slope across the shelf. This determines the

boundary conditions that we will impose on the wind-driven component of

the model decomposition.

Before considering the details of how to apply these conditions,

we note that the wind-driven response does not depend in any way on the

density data so that alternate grid systems are possible. To take advantage

of this we will add stations in regions

resolution of

be added over

detailed grid

The wind

key bathymetric features.

of particular interest for increased

These additional stations will

the canyon, the shelf break and the shoal area. The more

system and new triangle mesh are shown in Figure 16.

set-up forcing requires a uniform slope across the shelf

of the GS domain.

be represented by

between the 1,000

addition to these

This forcing applied to any cross shelf section can

a linear hinge. We set these with a slope of unity

m (non-dimensional depth 5) contour and the coast. In

Dirichlet conditions we will assume the winds do not

affect the deep offshore region so these values will be set to a constant

equal to the value of the offshore extreme of the right-hand boundary.

The coastal boundary segment will be subject to the usual “zero net flux”

conditions. The complete wind set-up solution will be the linear sum

of these forced hinge sections~ each of

Green’s function response of the domain

across a particular shelf profile. For

which can be thought of as the

to an imposed bathystrophic  balance

each of these hinge components,
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the cross-shelf profile will be set; remaining cross-shelf model boundaries

will be subject to the FEM natural boundary conditions.

The key question is; along which cross-shelf profile should the hinges

be set? Where the bathymetric constraints dominate, either side should

lead to the same result. On the flat nearshore segments of the shelf,

however, the length scale is still determined by the elliptic terms

in the equation and the influence of boundary values (or forced hinge)

fall off with distance like the Green’s function components. To explore

these options three barotropic cases are run with the surface elevations

shown in Figure 17 and the current vectors shown in Figure 18.

For each of these, alternate cross-shelf profiles would lead to alternate

possible circulation patterns with the total number of degrees of freedom

corresponding to the number of degrees of freedom in the specification

of all of the cross-shelf profiles.

VI. Discussion

The GS numerical experiments can now be discussed, comparing first

the density-driven response and the three different techniques that have

been used to find the minimum barotropic mode. As discussed in section

two of this report, a minimum barotropic mode is required because the

given density distribution we have chosen is quite simple and the bathymetry

is no more complex than that which might be expected of a typical shelf

region, the joint interaction between these two fields becomes relatively

complex. It is useful to examine the deviations in the alpha field along

the bottom (Figure 11). Clearly the major bathymetric features and density

field result in a complex pattern in the bottom pressure, or more specifically

the lateral bottom pressure gradients. The details of how these interactions



effect the flow are represented.as a J(a,d) torque term in the differential

equation; this pattern of J(a,d) is shown in Figure 19. The resulting

flow must satisfy both kinematic continuity constraints and conservation

of vorticity conditions. The divergence in the flow (veritcal stretch-

ng as the water moves over sloping bathymetry) interacts with the planetary

vorticity and results in the development of shears and horizontal accel-

erations, In addition to these constraints, which are defined and controlled

by the differential equation in the interior, we impose the boundary

conditions that specify the form of the solution around the edge of the

model. Our basic premise is that in the absence of wind set-up the sea

surface should be at a low potenital  energy state, or that the flow’s

interaction with the bathymetry should be in some sense small; and that

the solution should not show any strong or irregular currents along the

open boundary regions across the shelf. Each of the three techniques used

to obtain boundary conditions concentrate on obtaining 30W potential

energy solutions overall, or on forcing a smooth boundary region. The

general features of the flow can be seen in Figures 12, 14 and 15.

Looking first at minimizing the potential energy along reduced char-

acteristics (Figures 12a, 14a and 15a) the general features of the density-

driven flow are clear: 1) In general the flow is weak and energetic current

bands do not develop, which is consistent with our initial premise. 2)

As the forced onshore flow first encounters the steep continental shelf

the baroclinic/bathymetric interaction term introduces a general turn

to the east in the surface currents, with the bottom flow moving slowly

to the original westward direction, paralleling the isobaths.  3) Over

the shoal area on the eastern segment of the shelf a counterclockwise



circulation develops with intensified flow over the eastern slope of this

positive bathymetric feature. 4) Over the canyon that cuts through the

western segment of the shelf a clockwise circulation is observed, with

the more intense currents found over the western slope of this negative

bathymetric feature. 5) Along the shallow relatively flat coastal segment

of the shelf region the flow is weak and generally to the east. Finally,

6) the offshore level of no motion and continental slope interaction region

exhibits what appears to be a banded east-west current pattern that is

particularly evident along the smooth eastern segment of the slope region.

The bottom flow predicted by this approach is generally small (virtually

zero over most of the shelf) and along isobaths, with the exception of

a few boundary triangles right in the steepest region of the continental

slope where the water that is forced onto the slope must exit the model.

This is obviously an open boundary effect that the characteristic approach

was not able to totally suppress.

We may now turn our attention to the more rigorous Green’s function

minimization of the potential energy. The results of this case study

can be seen in Figures 12b, 14b and 15b. The numerical technique was

verified to have actually obtained an overall minimum potential energy

sea surface and the potential energy was found to be a quadratic function “

of the component amplitudes, as expected. The potential energy of the

characteristic technique was 40% greater than the Green’s function method.

The general behavior of the solution can be discovered by looking at the

individual components shown in Figure 13. Figure 13a is the basic baroclinic

forcing and clearly shows that the interior is going to have baroclinic

circulation associated with both the canyon and shoal regions. In addition

a weak coastal current and the effects of the sharp discontinuity between
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the offshore and interior region are evident. Figure 13b shows the baro-

t r o p i c  m o d e l  r e s p o n s e  a s s o c i a t e d  w i t h  t h e  e l e v a t i o n  o f f s e t  b e t w e e n  t h e

offshore and interior region. The major flow is along the continental

slope, but the flow is also seen to extend into the canyon region and

across isobaths, particularly in the shallow shelf region where the bottom

friction plays a significant role. It is obvious that this can be combined

with the baroclinic  forcing (shown in Fig. 13a) in such a way as to largely

cancel out the strong currents along the continental slope. Also pertinent

to this Green’s function component is the significant boundary layer that

occurs on the western edge of the model. This is due to the cross-isobath

flow that takes place gradually throughout the interior of the model and

must be compensated for in the narrow return flow. Actually this is just

a more complicated example of the flow which is described in section II

and shown in Figure 3. The remaining Green’s functions all show the model’s

barotropic response to elevation at a single boundary point (Fig. 13c).

In the absence of strong bathymetry, the response is controlled by the

elliptic terms in the model equation, and bottom friction sets the length

scale.

In Figure 14b we see that the composite Green’s function currents

exhibit all of the six features of the interior flow that were enumerated

for the results of the reduced characteristic technique. There are

tially no differences in the surface current vectors except in the

boundary region of the model where significant boundary layers are

The bottom currents from the Greenrs function solution are uniform’

essen-

western

present.

y very

small except in the boundary region where some are surprisingly large.

This approach clearly does not handle all of the extraneous boundary layers

that occur, and some additional research would seem appropriate.
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In re-examining  the total potential energy of the model we may note

that very strong boundary currents are possible with relatively minor

potential energy changes in the small boundary triangles. In addition,

when the large interior regions are included in the minimization, a very

slight change over this area (representing a large potential energy) may

balance a relatively extreme perturbation along the edge. At this point

we should also invoke some of our fundamental understanding of how partial

differential equations are solved and of the significance of boundary

conditions in the construction of solutions. Basically the differential

equation must specify the nature of the solution within the interior of

the domain. Along the boundaries the nature of the solution must be imposed,

and for these regions this is typically more significant than the control

exerted by the differential equation. This all suggests that to minimize

the potential energy over the entire model may be an incorrect strategy.

It tends to specify the solution too rigidly over the interior and doesn’t

properly force the correct form of the solution in the critical boundary

regions.

We can now examine the results of using the natural boundary condition

technique shown in Figures (12c, 14c and 15c). The surface contour pattern

appears to be very close to the one obtained by the characteristic and

reduced equation technique. The six major features described in the previous

cases are essentially unchanged by this technique.

Two interesting features do show up in the natural boundary condition

case that were not seen in the characteristic or complete potential energy

minimization/Green’s function cases. First of all, there is no evidence

of enhanced boundary currents. The total potential energy is 28% greater

than for the Green’s function minimization. This appears as a slight

491



offset over the interior with a much

regions.

The second major feature of the

smoother surface in”the boundary

natural boundary condition solution

is that the bottom currents (Figure 15c) are zero, unlike the other cases.

In this respect

dynamic heights

Looking back at

bottom currents

the solution appears to be a direct extension of the offshore

methods adjusting the level of no motion to the bathymetry.

the basic differential equation it is clear that zero

(i.e., g = -Nl~) E* = (C + Nla). Figures 4 and 5 illustrate

the physical reason for the zero bottom flow condition over the entire

domain produced by these boundary conditions, The zero bottom flow in

boundary triangles leads to zero bottom flow along characteristics (as

long as they are defined) and thus over the entire domain.

The three techniques used to estimate the density-driven partition

of the flow can now be compared and evaluated

objectives, i.e., to represent the baroclinic

with the minimum barotropic mode (sea surface

in terms of our original

component of the flo;; along

elevation) such that the

bottom flow can be reconciled with the given density and topographic fields.

All three approaches lead to current patterns in the interior which

are essentially indistinguishable. Differences occur in the boundary regions

and in the small bottom currents. The

e n e r g y  a l o n g  c h a r a c t e r i s t i c s  u s i n g  t h e

method of minimizing potenital

reduced equations leads to the

highest overall potential energy of the three techniques. In terms of

the obvious development of extraneous boundary currents the characteristic

method is intermediate with boundary layers weaker than the Green’s function

solution, but with considerably stronger boundary layers in the natural

boundary condition solutions. The characteristic method gives a relatively

strong band of bottom currents along the face of the continental slope.
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These currents are susp.ect.and  most likely are related to the way the

offshore and cross-shelf segments are joined.

The Green’s function technique gives a clear overall minimum potential

energy solution. Interior bottom currents are very close to zero and

seem to suggest that, away from the boundaries, the minimum set-up case

consistent with the model dynamics results in quiescent bottom currents.

The Green’s function minimization of the entire regime does have the dis-

advantage that it generates energetic boundary currents which are obviously

not realistic.

The natural boundary condtion solution is computationally  the simplest,

and like ‘the Green’s function solution, the interior bottom currents are

zero. In addition, this technique leads to essentially no boundary layers

and extends the zero bottom flow throughout the entire domain, including

boundary regions. With this it is possible to interpret the minimum baro-

tropic mode in a somewhat different light. The unforced baroclinic response

of a complex bathymetric region that has adjusted in such a way as to

minimize the potential energy of the sea surface elevation will approach

a  z e r o  b o t t o m  c u r r e n t  c o n d i t i o n . The natural boundary condition formulation

best yields this “minimum barotropic” mode by a circulation that in fact

creates a minimum (zero) bathymetric interaction. This differs from

the absolute minimum potential energy flow only in the important open

cross-shelf boundary regions, and here the natural boundary condition

formulation leads to more realistic flow, free from what are known to

be extraneous currents.

It is an interesting side note that, given an unforced geostrophic

plus Ekman flow regime for any region, the only possible steady state

circulation will be the case where the barotropic and baroclinic modes
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combine in such a way as to yield a zero bathymetric interaction, which’

in essence turns off the frictional dissipation.

In Figures 17 and 18 we can see the GS region’s response to indirect

wind forcing. T h i s  i n c l u d e s  t h e  l a r g e - s c a l e  r e g i o n a l  s e t - u p  o f  t h e  s e a

s u r f a c e  b u t  n o t  l o c a l  s u r f a c e  E k m a n  c u r r e n t s . An examination of these

results reveal a number of interesting features and regional characteristics.

The use of the FEM natural boundary conditions allows for a smooth

continuation of the solution through boundary regions, so that specifying

surface elevations anywhere in the model results in a regional circulation

pattern with what appears to be transparent boundaries. For example,

in 17a and 18a a uniform surface slope is specified across the shelf on

the eastern boundary and natural boundary conditions

western boundary. Figures 17b and 18b show the flow

the cross-shelf elevations are determined across the

are used along the

that results when

middle of the model

and both east and west boundaries are determined as the natural boundary

conditions. Figures 17c and 18c show the corresponding case forced from

the western boundary. It is interesting to note the differences between

these cases. There is obviously a length scale associated with the region

influenced by any of these cases. To understand these variationswe may

once again consider the Green’s function components, which in turn represent

just the regional dynamic response of the model. Along the shelf break

where bathymetric controls are dominant the parabolic nature of the equations

is evident, and extends across the entire model closely following f/d

contours. In contrast, the shelf in the nearshore region is nearly flat

and bottom friction, the elliptic nature of the equation dominant, and

the diffusive character of the solutions are clearly seen. This diffusive

scale is of special interest and can be estimated by a scale analysis
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of the differential equation. The relevant term in the governing equation

is

N2V25

Since in non-dimensional form E has been scaled to O (unity) this term

will o n l y  b e  s i g n i f i c a n t  w h e n

~
L 2

O (unity)

This defin~s a length over which c variations must occur if the elliptic

term is to be significant, i.e.,

This is the appropriate scale length for the Green’s function response

in relatively flat regions where elliptic nature of the differential equa-

tion dominates, i.e.~

It is also clear from these scaling considerations that the diffusive

length scale (N2)% determines the minimum size bathymetric feature that

will be effective in the conservation of potential vorticity-dominated,

parabolic model response. That is, in the presence of bathymetric variations

the flow will follow f/d contours only down to a scale length where the

diffusive processes become significant, at which point smoothing of the

elevation contours will occur. Covering the entire cross shelf region,

the solutions show a smooth gradation from one set of dynamic balances

to the other. The same characteristics and length scales that are seen

in the Green’s function appear in our hinge solution.
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As a final point, the three hinge modes are linearly independent

and can be thought of as hinge influence functions. T h e n ,  a s s u m i n g  t h a t

w e  h a v e  s e a  s u r f a c e  e l e v a t i o n  i n f o r m a t i o n  a t  v a r i o u s  points a l o n g  t h e

coast, these can be combined in a logical way. For each point along the

coastal boundary (segment a - Fig. 1), a bathystrophic hinge response

is calculated. A distribution of sea surface elevation along the coast

will be associated with this hinge located at point n along the coast,

i.e.,

En = fn”(s)

where f(s) is just the value of the hinge response as a function of the

distance s along the coast. Then given m locations along the coastline

where the hinge amplitudes hm are given, the following m equations can

b e  d e v e l o p e d :

hm = / C n fn(sm)
n

Form = n a solution is obviously possible, the appropriate weighting

amplitudes for all the hinges are obtained in terms of the coefficients

(Cn’s]. If an infinite number of m locations are chosen, the above equation

and formulation clearly degenerate to a continuum and once again

a formal Green’s function solution to the model dynamics subject

linear sea surface slope forcing (hinge mode) across the shelf.

give

to a

For any particular shelf region or transect, the surface elevation

will be the sum of a number of hinge modes; thus, it will not necessarily

appear as a uniform cross-shelf profile. Instead it will relfect the

appropriate dynamic distribution of the immediate location, plus the weighted

contribution from neighboring locations. In a somewhat related study,
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Csandady (1978) considered similar dynamics and the regional influence

of local wind forcing and offshore circulation. His work was for a uniformly

sloping wedge-shaped coastal region where the parabolic nature of the

dynamics was uniformly dominant.

For the present. study the three hinge modes shown in Figures 17 and

18 can be considered as an initial numerical approximation to the continuum

Green’s function. For these the influence function fn falls off to essentially

zero at adjacent hinge points and the weighting factors are locally deter-

mined, i.e.,

hm = Cm

This means that each hinge coeffic<

(bathystrophically balanced) value

sum of the three hinge modes.

ent will be set at the locally determined

and the total solution will be the

Having examined all of the various modes for the Gondwannaland Shelf

region and considered the dynamics of the decomposition from a number

of points of view, it is informative to look at the composite flow.

We will combine the output of the density-driven and wind set-up responses.

Figure 20 shows the results of the natural boundary condition solution

for the density-driven response plus the sum of the hinge modes representing

the coastal set-up case. Figure 21 shows the natural boundary condition

solution for the density-driven response minus the sum of the hinge solutions

representing a coastal set-down case. Assuming a simple hinge response

for the shelf, all possible circulation patterns must be some linear com-

binations of the modes represented in 12c, 17a, and 17c.

The linear d-

into a density-dr”

VII. Conclusions

agnostic model equations have been formally decomposed

ven response and a wind set-up response. These responses,
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plus an additional non-divergent surface Ekman mode, make up the total

flow that can be represented by the model. The density-driven response

is made up of baroclinic currents driven by the imposed density field

and by a minimum barotropic

in such a way as to satisfy

The model is tested on

mode which orients the combined bottom currents

tke model’s dynamic and kinematic constraints.

an analytic, but realistic domain (the Gon-

dwannaland Shelf) which includes topographic features representing a broad

shelf and continental slope with a shallower bank and large submarine

canyon.

Three alternate approaches are used to obtain estimates of the minimum

barotropic mode. The first, based on characteristic of the reduced model

equations, is of historical interest in that it has been used in previous

studies. The second solution technique obtains a minimizing potential

energy for the sea surface, and thus shows the most relaxed overall regional

state

third

tiona”

that is consistent with the bathymetry and density fields. The

method, which depends on the finite element technique, is computa-

ly the simplest, and from a theoretical point of view should reduce

the occurence of extraneous open boundary currents.

All three of these techniques yield essentially identical interior

fl Ows . The finite element method using natural boundary conditions is

seen to offer the best approximation to the minimum barotropic  mode, in

that it extends the formal minimum potential energy solution smooth~y

throughout the cross-shelf boundary regions. From a physical point of

view, the minimum barotropic mode represents a “minimum bathymetric inter-

action” i.e., barotropic and baroclinic  modes that give zero bottom flow.

Conceptually this is a natural extension of the offshore level of no motion

introduced by the dynamic heights method. In addition it can be seen that,

given unforced barotropic,  baroclinic  and bottom Ekman modes, this is



the only possible steady invisid circulation pattern. Within the context

of the linear model formulation, the density-driven response contains

all of the independent circulation information available from the density

data. The development of the density-driven response can be carried out

once for each set of STD or CTD data available for the study region, but

beyond that no other independent density related circulation modes are

possible.

The wind set-up response of the model can be represented by a number

of hinge, or cross-shelf profile modes. the known profile can be applied

anywhere within the model when the finite element method with natural

boundary conditions is used. The region of influence of any single cross-

shelf profile depends upon the topography and can be explained in terms

of the joint elliptic and parabolic nature of the governing partial dif-

ferential equation. This dependence can also be clearly demonstrated

by the component Green’s function responses that were developed. These

domains of influence for the hinge or cross-shelf profile modes define

the need for boundary input data and the spatial scale that must be resolved

by observations.

Having developed the response characteristics of the model region,

it is obvious that these patterns could be usefully employed to design

the minimum resolution observational grid needed to study the area, For

a linear system, the other relevant scale would be the length associated

with the forcing (large-scale winds) that set up the cross-shelf profiles.

The total regional circulation for the model domain may now be rep-

resented by a simple linear combination of the density response mode and

the various hinge or cross-shelf profile modes, plus a non-divergent surface

Ekman drift. Since there is only one density response mode for each set
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of STD or CTD data, and the wind response

on the bathymetric characteristics of the

modes are all dependent only

region, the procedure of applying

the model to a study region is greatly simplified. In addition to increased

model efficiency, these modes are seen to represent fundamental physical

processes that can be directly related to empirical data and can be used

to obtain measures of success for predicted currents, as well as in the

design of observation arrays.
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TABLE 1 NONDIMENSIONAL CONSTANTS USED IN THE GONDWANNALAND SHELF

Do=-! 00.
Dl=50000
D2=49.
D3=7.00
D4=50.
D5=3.0
D6=i,5
D7=L0
D8=3. 14159/2.

DSHELF=DO-Dl/(D2+EXP(D3*YYY))+Dl  L+(Y-Y2MY3-Y2)

D9=-500.
D10=4.0

DBANK=D4*EXP(-(D5+  (X-XO)H2.+D6+(Y-YO)  H2. ))

Dlt=80.
D\2=-LO

DCANYON=EXP[-D7X (Y-Y I )xx-D@(X-H  )*x2.)x

X0=3. 5
(C0S(D8*(X-X! ))*D9K 1.-EXP{D12XYH4.)))

X1=1.5
Y!=l.o
y~az.o

Y3=5.0
W=2.5

RHOO=l .032
A=. 00025

B= .0005

C=l ./200.

RHO=RHOO-(AXX+B++Y)YEXP(  C~Z)

ALPHA=RHO*D-(AXX+B+Y)+( l-EXP(C*(-D))/C
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Figure Captions

Figure 1 General configuration of typical continental shelf study region.

Figure 2 Example of density field with cross isobath flow for use in an
analytic example of model solutions.

Figure 3 Surface elevation contours for secondary barotropic flow gen-
erated in response to cross isobath baroclinic forcing.

Figure 4 Diagram of aribtrary triangle showing the relationship between the
independent variables depth and density; their associated gradients
vd and VU, and the geostrophic  components of the bottom current.

Figure 5 Series of triangles connected by an isobath, or characteristic
for the reduced equation.

Figure 6 Triangle intersected by an isobath with surface elevations
determined at the ends of the transect.

Figure 7 Demonstration of interpolation technique used to obtain boundary
values for the case where f/d characteristics do not intersect
the model except at one point.

Figure 8 Demonstration of interpolation technique used to obtain boundary
values for the case where f/d characteristic extends along
the edge of the model for two or more boundary points.

Figure 9 Grid system used for density driven response study on the GS
region representing a square domain of 5 x 5 non-dimensional
units.

Figure 10 Bathymetric chart of the Gondwannaland shelf model domain showing
the shelf section with a shoal to the east and a large submarine
canyon to the west.

Figure 11 Alpha field (bottom pressure) deviations along the bottom of
the model domain.

Fiqure 12 contours of surface elevat ion indicat ing surface stream l i n e s
for the minimum barotropic mode. a) method of minimizing
potential energy along the characteristics of the reduced equation.
b) Green’s function minimization of total potential energy.
c) Finite element method of natural boundary conditions.

Figure 13 Green’s function components representing model response. a) non-
homogeneous forced mode reflecting the density distribution and
offshore dynamic heights. b) homogeneous model response to a
uniform displacement of the offshore region relative to the shelf
region. c) homogeneous response to a unit displacement of one
boundary point.
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Figure 14 Surface current vectors for the density driven response with
the minimum barotropic mode a) method of minimizing potential
energy along the characteristics of the reduced equation. b)
Green’s function minimization of total potential energy. c)
Finite elemeent method natural boundary conditions.

Figure 15 Bottom current vectors for the density driven response a) method
of minimizing potential energy along the characteristics of the
reduced equation. b) Green’s function minimization of total potential
energy. c) Finite element method natural boundary conditions.

Figure 16 Triangular mesh used for the wind set-up partition of the GS
region study.

Figure 17 Surface elevation contours for the hinge response modes associated
with the homogeneous wind set-up partition of the model equations
a) eastern boundary set as hinge profile, b) central cross shelf
transect set as hinge profile, c) western boundary set as hinge
profile.

Figure 18 Current vectors for the hinge response modes associated with
the homogeneous wind set-up partition of the model equations.
a) eastern boundary set as hinge profile. b) central cross shelf
transect set as hinge profile. c) western boundary set as hinge
profile.

Figure 19 J(a,d) Baroclinic  forcing in density driven response given by
the joint baroclinic, bathymetric interaction. Shaded area in-
dicates negative values.

Figure 20 Sum of the density driven response and wind set-up response
(hinge modes) for a case representing winds from the east.
a) sea surface elevation contours. b) surface current vectors.
c) bottom current vectors.

Figure 21 Sum of density driven response and wind set-up response (hinge
modes) for a case representing winds from the west. a) sea
s u r f a c e  e l e v a t i o n  c o n t o u r s .  b )  s u r f a c e  c u r r e n t  v e c t o r s .

c )  120ttom c u r r e n t  v e c t o r s .
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c) Cross shelf boundary

Figure 1
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Figure 3
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5URFFICE ELEVflTION CONTOURSS.&
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BOTTOM VELOCITY
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