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I. INTRODUCTION

1.1 Program Objectives

The Gulf of Mexico Physical Oceanography Program (GMPOP), a Minerals
Management Service (MMS) study funded under contract with Science A Applications
lpternational Corp. (SAIC), has as its objective the development of an
improved understanding of primary Gulf circulation patterns and the
mechanisms producing these patterns. It is expected that insights from this
program will provide an expanded basis for making informed management
decisions related to Outer Continental Shelf (OCS) oil and gas exploration,
production and transportation. This objective is in keeping with the O0CS
Lands Act requirements that the Dept. of the Interior conduct appropriate
studies to evaluate the environmental impacts of offshore oil and gas
development.

1.2 Program Background

In 1982, a multi-year investigation was initiated of physical oceanographic
conditions related to or resulting from deep circulation patterns in the Gulf
of Mexico. The program was designed with a phased regional emphasis. During
Program Years 1 and 2 measurements and associated interpretation focused on
circulation in the eastern Gulf with special emphasis on the Loop Current and
its interaction with the adjacent west Florida shelf and slope (Figure 1.2-1).
As discussed in Chapter 2, two years of shelf and slope field measurements
were completed and provide the basis for the present report. These
measurements were designed to document the patterns and processes which
occurred both along and across the slope and outer half of the west Florida
shelf.

1.3 Program Elements and Participants

To achieve the program objectives, five major measurement tasks were
undertaken over a two year period. These include:

) Subsurface currents/temperature and pressure across and along the
west Florida shelf and across the slope into the region often
occupied by the Loop Current. Subsurface currents on the Louisiana
and south Texas shelf.

L) Several regional and process oriented hydrographic surveys on and
adjacent to the west Florida slope. These were designed to document
conditions reflecting and affecting circulation and exchange along
the eastern half of the Loop Current and shoreward to the outer half
of the shelf. This included studies of Loop Current boundary waves
and perturbations.

° Use of satellite thermal imagery to define the spatial extent and
time~dependent characteristics of the Loop Current boundary and
related features.
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Figure 1.2-1.

Gulf of Mexico bathymetric map showing the nominal partition
of the eastern and western Gulf of Mexico study areas.
also partitions the emphasis on the Loop Current and Loop

Current eddies.
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° Tracking Lagrangian drifters deployed in major Loop Current eddies
to document and partition the dynamic and kinematic characteristics
of eddies shed by the Loop Current.

° Periodic and site-specific vertical temperature sections as
estimated from expendable temperature probes dropped from
Ships-of-Opportunity (SOOP) on regularly scheduled routes and on
one-time opportunistic cruises.

These data are combined with routinely available observations such as coastal
and at-sea (buoy) winds obtained from the National Weather Service and coastal
waterlevel from the National Ocean Survey. Taken as a group, the above
provided the data base necessary to develop the needed improved understanding
of conditions in the eastern Gulf.

This data base also provides a standard against which the results of a
concurrent numerical circulation modeling study can be compared. The modeling
work is also MMS funded with time 1lines and deliverables coordinated with
those on the present program.

To extract the important patterns and processes from the comprehensive
multi-variate data set, a team of highly qualified scientists was established
to work both independently and in collaboration. Presented alphabetically
with their affiliation and primary area of responsibility these included:

. Dr. L. Atkinson, Skidaway Institute of Oceanography (SKIO),
hydrography

] Dr. J. Lewis, SAIC, Lagrangian drifters
) Dr. W. Sturges, FBN Oceanography Inc. (FBN), subsurface currents

° Dr. F. Vukovich, Research Triangle Institute (RTI), satellite
thermal imagery

As shown in Figure 1.3-1, these principal investigators were supported by a
range of scientists and engineers, most of whom are from SAIC. The above
program was supplemented by Dr. W. Wiseman (LSU) who was responsible for
making subsurface current measurements on the Louisiana outer shelf. Dr. D.
Nummedahl and John Snedden, Department of Geology, Louisiana State University,
and A. Amos with the University of Texas, Marine Sciences Institute, Port
Aransas, Texas, were responsible for the south Texas shelf current
measurements.,

1.4 Report Organization

This report is organized to group comparable and relevant material and to
provide interpretative material without a simultaneous presentation of
background information such as methodology. Chapter 2 presents a discussion
of the data used and how it was obtained. Chapter 3 describes much of the
analysis used in evaluating the observations discussed in Chapter 2. Chapter
4 is the primary technical discussion which uses selected results of data
analysis to describe salient features of conditions in the study area.
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II. DATA ACQUISITION AND METHODOLOGY

2.1 Introduction

Presented below 1is an overview of when and how the various program
observations were taken. Material is presented by program element so that a
separate section exists for each of the major measurement or observational
programs mentioned in Chapter 1. This chapter will provide an overview of the
extent of the data base available to the program principals and provide an
understanding of methodology by which the observations were made or obtained.

2,2 Lagrangian Drifters

2.2.1 Introduction

The major Gulf of Mexico (GOM) circulation features are the Loop Current and
large anticyclonic eddies or rings that are shed from it. The western
movement of these rings results in the transport of a significant amount of
heat, salt, and momentum into the western GOM (Elliot, 1979; Kirwan et al.,
1984a). Dispersion within a ring is relatively small (Kirwan et al., 1984b);
thus one could expect that material would tend to remain within the ring and
be transported to the western GOM. For these reasons alone, it is critical
that characteristics and movement of Loop Current rings be better understood.
Knowing why they move along a particular path and determining the governing
forces are particularly important. The goal of this study is to gain the
ability to predict the speed and direction of movement of these rings, which
is necessary information for determining if and when a ring will impact an
area of concern.

Ring motion can be resolved or documented by several methods. Hydrographic
surveys and current profiling provide the most direct and complete sets of
data. However, the expense of such regular surveys of a ring over its
lifetime (order of 1 year) is large. In many cases, satellite imagery can
provide a more inexpensive means of ring tracking; however, it does not
provide adequate dynamical information. Moreover, the location, and thus
movement, of the warm-core ring is inferred using sea-surface temperature
(SST) characteristics which cannot be discerned during summer or under clouds
and can be significantly modified by frontal passages during the winter. One
of the methods used in this project for following rings 1s tracking a
Lagrangian drifter. 1In essence, a surface-constrained water parcel within a
ring is tagged with a drifting buoy, and the motion of the buoy as it travels
westward with the ring is used to study the kinematics and dynamics within the
ring. This is the most inexpensive and accurate method for directly
determining the following ring kinematics:

(1) translation of the ring center,
(2) swirl velocity, and
(3) ring position.

In addition, recent theoretical advances in the analysis of Lagrangian data
(Kirwan et al., 1984b) allow calculation of differential motion within the
ring (vorticity, divergence, and deformation). This information can be used



to evaluate dynamic balances using the vorticity equation, a form of angular
momentum balance.

2.2.2 Drifting Buoys

The drifting buoys used in this study are described below. In addition, the
determination of the drifter's location and the data path are outlined.

2.2.2.1 Drifting Buoys

Buoys used were produced by the Polar Research Laboratory in Santa Barbara,
California. Figure 2.2-1 shows the physical characteristics of the drifters,
which are essentially short spar buoys with double conical flotation collars.
Each drifter was drogued by a 200-m line with a ballast weight at the tail of
the line. Communications and position fixing are the functions of an on-board
electronic transmitter called a platform transmitter terminal (PTT) which
includes an antenna, an RF modulator and power amplifier, message generation
logic, a sensor interface unit, an ultra-stable oscillator, and a power
supply. The PTT sends data to a specilalized ARGOS electronics package on
board a polar-orbiting satellite. Relative motion between the satellite and
drifter produces a Doppler shift in the frequency of the RF 1link which is
processed along with the satellite orbital track to derive the drifter
position.

2.2,2.2 Data Path

The data transmission path is shown in Figure 2.2-2. In this case, the
"users' are the NOAA Data Buoy Center (NDBC) and scientists involved in the
present program. The complete data set of drifter positions is sent by
Service ARGOS to NDBC on magnetic tape and forwarded to SAIC for amalysis.

2.2.3 Position Data

Data used in this study are positions of drifters with ARGOS ID's 1599, 3374,
3375, and 3350. Drifters 1599, 3374, and 3350 were released in large rings
while Drifter 3375 was placed in a smaller eddy in the northwestern GOM. In
subsequent discussion, each ring will be referred to by the identification
number of the drifter used to track the ring. Trajectories are shown in
Figures 2.2-3 and 2.2-4.

Rings 1599, 3374, and 3350 tended to follow the deepest portion of the Gulf of
Mexico. Drifter 3350 abruptly left its ring after three revolutions, while
buoys in Rings 1599 and 3374 were tracked all the way to the Mexican slope,
impacting at approximately 22°N. Drifter 1599 was still in its ring when the
reporting system became inoperative, but Drifter 3374 left its ring after July
1983 and moved eastward at about 24°N.

Drifter 3375 was to be placed in a ring shed from the Loop Current in March
1983. Thermal frontal analysis indicated that the ring was centered at 26.5°N
and 94°W, but a predeployment XBT survey indicated a weak thermal signature.

In spite of this, Drifter 3375 was released in this eddy and showed rotational
characteristics for a short period before drifting southward. The drifter
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eventually came under the influence of anticyclonic rotation at approximately
24°N and made three revolutions before entering water shallower than 200 m.

2.2.4 Thermistor Data

The 200-m line on Drifter 1599 had nine thermistors at the depths given in
Table 2.2-1. In order to keep this line as straight as possible, a weight was
attached to the end of the line. However, it was realized that some tilt with
respect to the vertical would exist, and so a pressure gauge was also mounted
at the end of the line to provide a means of estimating the tilt. The problem
in using the thermistor data in the analysis of ring kinematics and dynamics
deals with time scales. Our analyses indicate that the rings have dynamic
variations on the order of 10 to 40 days. Ideally, these variations should be
related to changes seen in the vertical temperature structure from the
thermistor data. Unfortunately, there are considerable water temperature
fluctuations on the order of 10 to 40 days that result from the atmospheric
cooling and heating of the water column. These latter variations are
relatively large and mask the variations induced by variations in ring force
balances. Of course, atmospheric influences are less pronounced in deeper
water, but unfortunately most of the deeper thermistors operated for only
short periods of time.

The chronology of events of rings discussed 1in this report 1is presented in
Table 2.2-2, which summarizes when the rings were shed from the Loop Current,
dates of any subsequent XBT surveys, dates that the rings were seeded with the
drifters, the locations for the seedings, and the times that the drifters were
in the rings.

2.3 Satellite Imagery

2.3.1 1Introduction

The primary application of satellite imagery to the present program has been
to describe and define surface water masses and ocean fronts in the eastern
Gulf of Mexico and hence to understand better the circulation in that region.
A secondary application was to detect and locate oceanic phenomenon in support
of the field operations associated with the program. The basic data used were
infrared (IR) data from NOAA and GOES satellites.

Since for a given wavelength IR radiation is a function of temperature, over
ocean surfaces IR 1imagery provides the distribution of sea-surface
temperature. The satellite data in the visible portion of the radiation
spectrum was also obtained, but was of secondary wutility. The visible
satellite data provided information on the reflectivity pattern of the ocean
surface which is affected by waves and by suspended material at the surface.
Under certain circumstances, visible data can be used to detect ocean fromts
due to associated sharp horizontal gradients in suspended material
concentration.

11



Table 2.2-1. Depths of the 9 thermistors on the line on drifter 1599.

Thermistor ID Depth (m) of Thermistor
1 5
2 10
3 25
4 50
5 75
6 100
7 150
8 175
9 200

12
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Table 2.2-2. Chronology of events for Loop Current eddies containing drifters.

Approximate Time
of Separation
from Loop Current

Time that Drifter

(Determined by Dates of Drifter Deployment Was in Ring (mo)
Ring No Satellite Data) XBT Surveys Date and Location and Last Location
Ring 1599 Not Available None Known Nov. 1980 .6
24.5° N 25° N
92° W 95.5° W
Ring 3374 June 1982 Aug, and Dec., Oct. 1982 .9
1982 25° N 24.5° N
90° W 95.5° W
March 1983
Ring March 1983 None Known Not Seeded .« o .
Ring 3350 Jan. 1984 Jan. 1984 May 1984 .1.5
23.5° N 24° N
92.5° W 92.5° W




2.3.2 Satellite Specifications

As previously indicated, IR data were obtained from two satellites. The
present-day NOAA satellite series has been in operation since 1978 with the
launch of TIROS-N. This polar-orbiting satellite provides twice-daily
coverage over a given area. Two NOAA satellites have been in orbit at the
same time giving four-a-day coverage. The orbital altitude of the NOAA
satellite series is in the 800~ to 900-km range.

One of the primary instruments on board the NOAA satellite is the Advanced
Very High Resolution Radiometer (AVHRR). Table 2.3-1 provides specifications
on the AVHRR system. The AVHRR, a five-channel radiometer, will provide data
for real-time transmission in both Automatic Picture Transmission (APT) and
High Resolution Picture Transmission (HRPT) modes. The data are available in
four operational modes:

(1) Direct readout to receiving stations of APT class at 4-km
resolution of data in one visible and one IR channel.

(2) Direct readout to receiving stations of the HRPT class at l-km
resolution of all spectral channels.

(3) Global onboard recording of 4-km resolution data from all
spectral channels for command readout at HRPT class stations.

(4) On-board recording of data from selected portions of each orbit
at l-km resolution of all spectral channels.

The Geostationary Operational Environmental Satellites (GOES) are placed in a
circular orbit at an altitude of 35,800 km. The orbital speed of the
satellites is identical to the speed of rotation of the earth. Therefore, the
satellites will remain stationary relative to a point on the earth. The data
used by this program are from the Visible-Infrared Spin-Scan Radiometer
(VISSR) which provides measurements of the earth in the 0.55-0.75 mm (visible)
band during daylight and in the 10.5-12.5 mm (infrared) band both day and
night. VISSR images of the global discs are generated by progressive stepping
of a scan mirror and 1000 rpm rotation of the spacecraft. Approximately 18
min are required to scan the earth from northern to southern polar regions.
The GOES visible image has a resolution of 1 km, and the IR image has a
resolution of 9.3 km. In addition to the normal scan mode, the radiometer may
be placed into a limited scan mode. This reduces the area of coverage but
increases the frequency of imaging.

Usable IR images of the Gulf of Mexico can be obtained from these satellites
about six to nine months of the year; i.e., in late fall, winter and spring
periods., In summer and early fall, the sea-surface temperature gradient in
the Gulf is generally weak and surface temperatures usually have very little
relationship to circulation patterns. Summertime heating produces a mixed
layer which acts like a buffer, preventing the satellite radiometers from
"seeing" deeper frontal features. Furthermore, during summer and early fall,
comparatively larger concentrations of water vapor exist in the boundary layer
so that significantly more absorption of IR radiation from the sea-surface
occurs. This tends to mask the true sea-surface temperature pattern.
Absorption in the IR spectrum takes place in the late fall, winter and spring

14



Table 2.