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EXECUTIVE SUMMARY

The MMS has led the USA’s physical oceanography studies of the Gulf of Mexico for over 30
years. Consequently, observational and numerical modeling studies of the Gulf of Mexico
circulation have advanced rapidly. Now the challenge is to pursue, together with Mexican
colleagues, progressive, coordinated observational and modeling studies of the deep Gulf of
Mexico.

Accordingly, fifty-seven American and seven Mexican colleagues gathered for two and one-half
days in June 2007 to review the present understanding of the deepwater physical oceanography
of the Gulf of Mexico, and to consider scientific, technological, and logistical opportunities to
further advance that understanding. For example, recent time series results from moored current
meter arrays and satellite radar altimetric sea surface height maps, on one hand, and numerical
simulations of the Gulf’s circulation, on the other hand, were presented, suggesting a high
potential for better integrated modeling and observational studies in the near future. Further,
newly developed instrumentation for free-fall or autonomous vertical profiling observations, as
proven in other regions of the ocean, were introduced for potential application in future Gulf
studies. A combination of invited plenary talks, participatory breakout groups, and final plenary
discussions was used to develop a consensus. To focus the deliberations, a proposed
MMS/PEMEX Gulf of Mexico Long-Term (viz., decadal) Goal was interjected: Establish a
scientifically credible Gulf of Mexico (model-based) analysis/re-analysis system that will
foster and facilitate diagnostic studies of the circulation and related topics.

Such a long-term goal immediately gives rise to several questions; e.g.,

1. What process and sensitivity studies are needed?
2. What observing subsystem network design strategy is needed?
3. What modeling subsystem validation and verification strategies are needed?

These and related questions led to the consideration of metrics for the assessment of model skill,
and, for that matter, of observing network adequacy. The potential scientific and pragmatic value
is high for strongly coordinated (i.e., more than has been the case heretofore) observational and
modeling studies, involving both American and Mexican colleagues, focused on the long-term
goal of evolving a circulation analysis/re-analysis capability for the circulation of the Gulf of
Mexico and its application to ecosystem and other studies.
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INTRODUCTION

The activities of the offshore oil & gas industry in the Gulf of Mexico have intensified and
extended further offshore in recent decades, creating new challenges for marine resource and
environmental management and new opportunities for marine scientific research. These
opportunities include the study of the circulation of the Gulf of Mexico in its full glory of
powerful mean current jets, fronts, and mesoscale eddies and their interactions with steep bottom
topography; the Mississippi-Atchafalaya River plume; and the passage of tropical cyclones in the
summer and cold fronts in the winter. Observations and numerical modeling of the Gulf’s
circulation suggest that observations and models must be linked to generate sound estimates of
the spatially complex and temporally variable circulation. American and Mexican offshore oil &
gas exploration and production has spread from the inner continental shelf regions to the
continental slope and now to the deep Gulf. In recent years, both American and Mexican
scientific investigations of the circulation have extended into deeper waters, too. Hence,
American and Mexican offshore industries, environmentalists, and research scientists share an
interest in a comprehensive description, understanding, and predictive capability for the Gulf
circulation. With both the USA and Mexico planning further extensive field and modeling
studies in the near-future, it was thought timely to conduct a workshop to discuss recent results
and coordinate plans, with the hope that more of the space-time variability could be
characterized than otherwise would be possible by either country alone.
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PROGRAM

26 JUNE 2007

0730
0800

0805

0820

Breakfast
Prof. Chris Mooers, RSMAS/UM
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Dr. Peter Hamilton, SAIC
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and Lagrangian Observations

Drs. Randy Watts and Kathy Donohue, URI
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from MMS Studies in the Gulf of Mexico

Dr. Leo Oey, PU
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Break
Dr. Julio Candela, CICESE
CANEK: Ten Years of Current Measurements in the Northwestern Caribbean
Dr. Julio Sheinbaum, CICESE

Numerical Models of the Gulf of Mexico and Caribbean Sea: the CICESE
Experience

Lunch
Dr. Robert Leben, CU

Upper Ocean Circulation in the Gulf of Mexico Deepwater: A Remote
Sensing Perspective

Dr. Peter Hamilton, SAIC
Upper Layer Subsurface Jets and Inertial Currents in the Northern Gulf
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Dr. Dong-Shan Ko, NRL

IAS/NFS: An Operational Nowcast/Forecast System for the Intra-Americas
Sea (IAS)
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Dr. John Toole, WHOI

New Technologies/Approaches (w/audience participation)
General Discussion Led by Chair and Co-Chairs
Organization of Breakout Sessions (Chair)
Adjourn

27 JUNE 2007

0800
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1000
1030
1200
1330

1500
1530
1700
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Breakfast
First Breakout Sessions
S-1  Observational Plans and Needs for Modeling Information in USA Waters

(Co-Chairs, Steven DiMarco, TAMU and Antonio Badan, CICESE;
Rapporteur, Walter Johnson, MMS)

S-2  Modeling Plans and Needs for Observational Information in USA Waters

(Co-Chairs, Robert Weisberg, USF and Julio Sheinbaum, CICESE;
Rapporteur, Carole Current, MMS)

Break

S-1 and S-2 (continued)

Lunch

Second Breakout Sessions

S-3 Observational Plans and Needs for Modeling Information in Mexican Waters

(Co-Chairs, Antonio Badan, CICESE and Steven DiMarco, TAMU;
Rapporteur, Walter Johnson, MMS)

S-4 Modeling Plans and Needs for Observational Information in Mexican Waters

(Co-Chairs, Julio Sheinbaum, CICESE and Robert Weisberg, USF;
Rapporteur, Carole Current, MMS)

Break

S-3 and S-4 (continued)
Adjourn

“Social Hour”

Xvi



28 JUNE 2007

0800
0830
1000
1030

Breakfast
Breakout Session Summaries (Co-Chairs and Rapporteurs)
Break

Overall Summary/Follow-up Plans (Chair and Co-Chairs; Rapporteurs,
Carole Current)

(Workshop report with studies recommendations/short report for
OS/etc.)

1200 Adjourn
1200 to 1400 Lunch meeting for Convener, Chair, Co-Chairs, Rapporteurs, et al.

to plan follow-up
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INDIVIDUAL PRESENTATIONS

PEMEX'S METOCEANIC PLANS FOR THE GULF OF MEXICO

Guillermo Pérez Cruz, Pemex

Slide 1
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Pemex’s Metoceanic Plans
for the Gulf of México

Guillermo Pérez Cruz
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Outline

Background

Summary of E&P Recent Activities
Program 2007-2012
Implementation

Remarks
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Background

Pemex has conducted operations to explore and produce
hydrocarbons in the southern GOM since the late 70s.

Numerous fields were discovered and went into production;
most of them still produce.

The infrastructure to produce ~2.8 bbd consisting of
platforms, pipelines and other facilities, lies in water depths
no greater than 100 m.

Operations are being supported by weather and hurricane
surveillance reports that provide information about: winds,
wave heights, temperature, pressure, among other
meteorological data and ocean conditions.

During that period Pemex has operated within international
standards of safety and environmental protection.
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Location of México’s Traditional Producing Province
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Summary of Recent Activities

Pemex formally started exploratory activities in deep waters of the
GOM in 2002.

Since then, valuable information has been acquired, processed
and interpreted, particularly ~25,000 sq km of 3D seismic and
hundreds of sea-floor piston cores.

As a result of this initial campaign, the assessment of the
prospective resources in deepwater GOM is supported by a more
reliable data base, new reserves have been added, and areas
where the exploratory effort need to be focused in the following
years are clearly identified.

Plans and programs to continue exploring, developing, and
producing the discovered reserves are now in progress.

To become a reliable operator in the deepwater arena, Pemex
needs to comply with safety and environmental regulations and
develop a way to understand and predict ocean behavior.

Slide 7

Program 2007-2012

To design a program to obtain oceanographic information in the
GOM, Pemex conducted a series of workshops with participation
of scientists from various oceanographic institutions.

The objectives of the program are to compile existing data and
models, acquire new data, and integrate all of them to produce
nowcast/forecast of currents and other ocean properties, as well
as to make the results available in real time for the Pemex
operations in the deepwater GOM.

Our aim is to deploy and operate an extensive distribution network
from the shelf to the deepwater environments to make in-situ
observation, complemented with remote sensing data.

Information generated from observational data and models output
will be stored within a large mass storing system and distributed to
users.
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Program 2007-2012
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Implementation

Pemex is relying on CICESE to gather, process and
interpret its oceanographic data. CICESE will be
responsible for model building, data management, and
data supply.

The Mexican Petroleum Institute (IMP) will act as a link
between Pemex and CICESE and will assure proper
delivery of data for reliable support of Pemex operations.

The IMP will also serve as the link between Pemex and
oceanographic institutions, as well as government
instances to establish collaboration agreements for joint
efforts and to prevent unnecessary duplications.

Slide 11

Final Remarks

Pemex acknowledges the importance of a reliable
oceanographic data base to support its operations and to
define criteria for infrastructure design in deepwater.

The program is believed to be a good starting point to
address Pemex’s mid- and long-term needs.

The program is a good starting point for collaboration
with oceanographic institutions and government
agencies.

The resulting information and models eventually will be
the source for research programs that not only will
benefit the scientific and industry communities but also
society in general.




MMS OBJECTIVES & EXPECTATIONS FOR U.S.-MEXICO
DEEPWATER WORKSHOP

Alexis Lugo-Fernandez, Minerals Management Service
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MMS Objectives & Expectations
for U.S.—Mexico Deepwater
* Workshop

Alexis Lugo-Femandez
Minerals Management Service
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i Outline

= Objectives & Expectations
= GOM Existing Current Database

= FY08 Study: “"Dynamics of the Loop
Current”

= Upcoming Highlights

Slide 3

i Objectives of this Workshop

» Review current ideas of deepwater physical
oceanography in U.S. and Mexican waters;

> Develop recommendations for a coordinated
plan of physical oceanography research in
U.S. and Mexican waters;

> Suggest coordination of physical
oceanographic and interdisciplinary research
between U.S. and Mexican researchers; and

» Prepare and publish workshop proceedings.
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i Workshop Expectations

> Recommendations to develop next phase of US.
deepwater studies.

» Recommendations for better integration of field and
modeling research.

> Suggestions for new technologies to conduct future
research.

> Suggestions for PEMEX to refine, implement, and
conduct their future program.

> Recommendations on how to coordinate U.S. and
Mexican research.

> Proceedings report that will guide next phase of MMS
research.
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FY08: “Dynamics of the Loop Current in U.S. Waters”

Loop Current affects both
upper and lower layer
dynamics.

Few long-term
measurements on this
current, especially during
eddy shedding.

Full depth moorings, PIES,
ADCP, satellite altimetry,
hydrographic surveys to be
deployed.

Three years of observations
Study effects of shedding on
lower layer dynamics,
Rossby waves, coupling of
upper and lower using
Collaboration with Mexican
oceanographers?
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i Upcoming Highlights

= Several new reports by early next year;
completed reports are posted on:
http: //www.gomr.mms.gov/homepg/regulate/
environftechsumm/rec pubs.html

= Start of Ultra-Deepwater Modeling Study
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AN OVERVIEW OF DEEP CIRCULATION PROCESSES IN THE GULF USING
MOORED AND LAGRANGIAN OBSERVATIONS

Peter Hamilton, Science Applications International Corporation

Introduction

The database of deep current observations has had recent major additions from several MMS
studies over the lower slopes and abyssal depths of the northern Gulf. The mooring positions are
given by the dots in Figure 1 with the indicated studies being the Eastern Gulf (E: 4 moorings,
January 2005 — January 2006), Exploratory Program (X: 19 moorings, March 2003 — April
2004), Northwestern Gulf (W: 13 moorings, April 2004 — June 2005), Mexican sector (C: 1
mooring in the central Gulf, May 2003 — August 2004, and 5 moorings in the western Gulf,
September 2004 — November 2005), and Western Loop Current (L: 1 mooring, April 2003 —
June 2004). The exploratory program also deployed deep RAFOS Lagrangian floats at depths
below 1000 m. In the central and western Gulf, the moorings have shown that there are bottom
intensified low-frequency fluctuations with periods of ~ 10 to 60 days that are highly coherent in
the vertical for depths greater than ~ 800 — 1200 m. These motions are characteristic of
Topographic Rossby waves (TRWs) as shown by Hamilton (1990), Hamilton and Lugo-
Fernandez (2001), and Hamilton (2007). Analyzed wavelengths are generally in the range of
~ 70 to 200 km and group speeds of order 10 to 20 cm/s are prevalent. Modeling studies (Oey
and Lee 2002) indicate that energetic fluctuations in the lower layer are generated by Loop
Current (LC) fluctuations, and also westward translating anticyclones (LC eddies) shed from the
LC. However, the mechanisms for the generation of TRWs by the LC or LC eddies have not yet
been clearly observed or elucidated from model and theoretical studies. Model studies have also
shown that westward translating LC eddies may generate a companion lower-layer
cyclone/anticyclone pair that remain coherent into the far western Gulf (Welsh and Inoue 2000).
These lower layer eddy-like circulations have not yet been observed, and present indications
from the observations are that if such deep eddies are generated by a LC eddy shedding event,
then they may disperse into more rapidly propagating TRWs.

Statistics

Figure 1 shows the mean and standard deviation ellipses calculated for 40-HLP current records at
generally 100-m above the bottom, where the water depth is greater than 1000 m. Records are at
least one-year long with the western Gulf having ~ 15-month durations. There are some locations
where the height above the bottom is 500 m; however, these are all in water depths greater than
2000 m, and because the currents are nearly depth independent in the lower part of the water
column, the statistics are not significantly affected when compared with the 100 m above the
bottom level. Means are generally anticlockwise with enhanced flows at the base of the slope ~

13
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Figure 1. Mean (top) and standard deviation ellipses (bottom) of 40-HLP currents at 100 to 500-m above
the bottom from recent MMS studies (see text). The mooring locations marked by a color (not
black) dot are used in Figure 4.
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2000 — 2500 m where the topographic slope is steep. This generally corresponds to the base of
the Sigsbee Escarpment in the central and western Gulf. In the central Gulf, there is a strong
mean jet directly above the steepest part of the escarpment slope around 91°W, where maximum
speeds are ~ 12 cm/s. This is the only location, to date, where an array of bottom-current meter
moorings was placed across the escarpment (the SEBCEP array, which was industry’s
contribution to the Exploratory program). Most of the other moorings were above or below the
escarpment. Nevertheless, it is clear there is an enhanced clockwise flow in the central and
western parts of the northern Gulf along the escarpment. The means also indicate that flows
converge towards the escarpment, particularly on the deeper basin side both for the Exploratory
and Western Gulf studies. The enhanced escarpment mean flows are also observed in the float
trajectories. Away from the escarpment, the deep floats tend to oscillate around in the same
general area. If they go close to the escarpment, then they move rapidly to the west. Thus,
fluctuating TRW flows, which are energetic below the escarpment, have some of their energy
converted to mean flows by the reflection mechanism of Mizuta and Hogg (2004) through
topographic rectification by the shoaling topography (DeHaan and Sturges 2005).

The eddy kinetic energy, represented by the standard deviation ellipses (Figure 1), has a high
degree of spatial variability. The largest magnitudes are on the west side of the LC, represented
by “L” and the southeastern part of the exploratory array. Energy decreases from this region in
all directions, including south. The Eastern Gulf array, “E,” was situated on the northern edge of
the LC front for most of the deployment interval, yet the energy levels are less than for the
observations immediately to the west. In the central Gulf below the escarpment, variance
decreases towards the west, and there is a further small decrease in the western array, where the
highest energies are in the northwest corner for the moorings deeper than 2000 m. There is a
sharp reduction in variance above, compared to below the escarpment in both the central and
western Gulf. Thus in both the western and central Gulf arrays, there are similar patterns with
energy highest at the upstream (in the sense of TRW propagation with shallower water on the
right) end with decreasing energy levels in downstream direction and a sharp reduction in energy
in the shallower water above the steep topographic feature. Otherwise, the ellipses have their
major axes nearly aligned with the topography, particularly where the slope is steep. This is
consistent with TRW dynamics.

Figure 2 shows the tracks of two RAFOS floats below the LC. The LC during this period, was
extended and in the process of shedding eddy Titanic. The floats are below any direct LC flows.
Both floats have both cyclonic and anticyclonic loops, and remain in the same general area for
the six-months of the record, neither migrating to the western basin nor to the west Florida slope
under the east side of the LC. It could be argued that these types of water parcel displacements
are characteristic of TRWs, which, to first order, transport momentum but not mass, unlike a true
eddy with a closed-core circulation. The velocities of the drifters are compared with the nearest
deep current meter, where the records overlap, and they are quite similar in magnitude with the
floats having more high frequency content than the velocities from the mooring. This is an
indication of non-linear nature and spatial in-homogeneity of the wave field.
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Figure 2. Smoothed lagrangian drifter tracks from two Exploratory RAFOS floats at 1500 m. Arrow heads
at five-day intervals. The black dot is the position of the LSU mooring L07.

In the exploratory program, 36 RAFOS drifters were deployed at depths greater than 1000 m.
Most of the drifters had tracks similar in character to Figure 2 in that the oscillations were fairly
rectilinear with no preferred direction of rotation and the floats remained relatively localized for
periods of up to six months. Exceptions were if the float ventured near to the escarpment: then
they were transported westward along the escarpment by the large deep mean flows found there
(see Figure 1). Of the 36 drifters deployed, only one showed the consistent kinematics of a
translating eddy. This was near the western Mexican slope, and the drifter made three circuits
just before it surfaced at the end of the deployment (Figure 3). There appears to be no obvious
connection with the upper-layer eddy field, though it does approximately precede a westward
translating upper layer cyclone that in turn precedes a LC anticyclone.
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3-Day 58T Composite 3/21/2004
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Figure 3. Smoothed track of RAFOS float RFS0490 at 2000 m for the indicated time interval. Arrow heads
are at 5-day intervals and dates (mm/dd) are the positions at 0000 GMT. The overlaid satellite
image (courtesy JHU-APL) of SST is a 3-day composite center around 21 March 2004.

Spectra

As an illustration of the decay of EKE from east to west, the KE spectra are shown for four
moorings (see Figure 1 for locations) that are in the deepest water except for the far western one,
with the two central ones (L6 and W3) being approximately on the 3500 m isobath. Note the
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Figure 4. Kinetic eddy spectra in variance preserving form for the near-bottom current records across the
center of the Gulf. The mooring locations are color coded the same as plot lines on Figure 1.

change of scale between the two plots with the L6 spectra being repeated as a reference. L7 on
the west side of the LC has the highest energy levels with prominent peaks at 30- and 50-day
periods. L6 and W3 have similar spectral content but much lower energy levels. However, the
decrease between L7 and L6 is much greater than between L6 and W3. W2 is at the bottom of
the steep Mexican slope and has a peak at 12-14 days. The shifting of spectral peaks with
location was noteworthy for the exploratory currents below the escarpment, with highly
energetic high frequency motions (~ 10 days) in the northeast section, lower frequency motions
(~ 60 days) in the southwest part of the array with relatively smooth changes between the two
along the escarpment. The southeast corner of the array had energetic motions at most of the
frequencies observed in the rest of the records. It appears that, in the central Gulf, incoming
TRWs from the east and southeast with a range of frequencies are reflected and refracted by the
escarpment topography which acts as a kind of filter, trapping the 10-day fluctuations in the

northeast and allowing the longer period fluctuations to propagate out towards the deeper water
in the western part of the Gulf.

Much remains to be explored in developing an understanding of how TRWs propagate through
the Gulf and where are the preferred generation zones. The connections to LC and surface layer
eddy variability at various scales have yet to be determined. Developing the correct physics of

these generation and propagation processes is going to be crucial for nowcast and forecast
numerical predictions of deep currents in the Gulf.
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Map of KE Spectra Locations
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KE Spectra across the Gulf - 2
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North Central Gulf RAFOS Float Trajectories
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Lower Layer Mean Current Profiles & 23 day TRW
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PRESSURE-RECORDING INVERTED ECHO SOUNDER (PIES)
STUDIES IN THE GULF OF MEXICO

Kathleen Donohue and D. Randolph Watts, University of Rhode Island

Introduction

Three arrays of pressure-recording inverted echo sounders (PIES) and current meter moorings
were deployed in waters deeper than 1000 m in the Northern Gulf of Mexico to measure and
coherently map currents and eddies daily through the full water column with mesoscale
resolution (Figure 5). The Exploratory Array in the north central Gulf was deployed in March
2003 and recovered April 2004. The Northwest Gulf array was deployed October 2004 to August
2005, and the Northeast Gulf array in December 2004 to January 2006. Science Applications
International Corporation (SAIC) led the Exploratory and Northwest Gulf projects while Evans
Hamilton Inc. led the Northeast Gulf project. Mineral Management Services funded all three
projects.

PIES CURRENT METER

30°N
28°N
26°N
24°N
22°N

20°N

4
o] 0
90"W 85"W
Figure 5. Map of the three MMS-sponsored arrays of pressure-recording inverted echo sounders (PIES,

blue dots), and current meter moorings (red dots) deployed in the northern Gulf of Mexico.
Bathymetry contoured every 1000 m depth.
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PIES Methodology

Within each of the three arrays we produced 4-D maps of temperature, salinity, density, and
velocity. Round-trip acoustic travel time measured by the inverted echo sounder allowed
estimates of vertical profiles of temperature, salinity, and density, utilizing empirical look-up
tables based upon historical hydrography for the region. Estimated horizontal density gradients
were mapped to estimate baroclinic shear profiles. Pressure fields were leveled via geostrophy
using mean current measurements. By referencing the baroclinic velocity profiles with deep
velocities from the mapped pressures and currents, the absolute profiles of geostrophic velocity
were obtained. Maps were produced with optimal interpolation techniques adapted from
Bretherton et al. (1976) and outlined in Watts et al. (2001).

Tall moorings provided independent measurements to evaluate our PIES-derived fields of
temperature and velocity in each experiment. Comparisons between PIES-estimated and directly-
measured mooring temperatures indicate that the empirical relationship holds well in the Gulf of
Mexico, and demonstrated that the variance explained in the thermocline is approximately 85%.
A more stringent test of the PIES methodology and mapping is the comparison against measured
velocities, and the agreement between measured and PIES-estimated series was excellent. The
rms differences in velocity were less than 10 cm/s near 200 m depth, 6 cm/s near 700 m, and 4
cm/s at depths below 1500 m.

Currents and Eddies across the Gulf of Mexico

The majority of mesoscale eddy variability in the deep-water northern Gulf of Mexico is related
to the Loop Current, Loop Current Eddies, and frontal eddies. The energy distribution is strongly
affected by the topography of the deep continental slope, especially the Sigsbee Escarpment
(Figure 6a). In each of the three arrays, the strongest surface currents and eddies outside the
Loop Current itself were in Loop Current Eddies. Only the periphery of the Loop Current entered
these arrays during these observations. In the North Central Gulf two Loop Current Eddies,
Sargassum and Titanic, entered the eastern portion of the array and passed directly through the
region to the southwest. The resulting eddy kinetic energy (EKE) was high in the eastern portion
and diminished to the west. EKE is defined as (1/2) [ (u')* + (v')* ], where u' = (u — U), V' =
(v-V), (U, V)= (u], [V]), and [ ] indicates the average over the observation period. In the
Northwest Gulf one Loop Current Eddy, Ulysses, entered its eastern portion while other smaller
and weaker cyclones and anticyclones appeared. The resulting EKE was high in the eastern
portion and diminished to the west. Loop Current and Loop Current Eddies skirted the southwest
corner of the Northeast Gulf array, so surface EKE was not as high as the other experiments.

The strongest deep currents and eddies among these three experiments were found in the North

Central Gulf array (Figure 6b). Deep eddies entered from the southeast and translated west and
northwest to impinge upon the Sigsbee Escarpment and track along it.
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Figure 6. Surface and deep eddy kinetic energy determined from the three PIES arrays in the northern

Gulf of Mexico. Bathymetry is contoured every 1000 m depth.

The deep currents became concentrated along the steep Sigsbee topography, especially near 90°-
91°W. Most eddies in the deep Gulf remain south of Sigsbee and do not enter into the region to
its northwest. We note that region is distinct from the shallower-yet continental shelf. In the
Northwest Gulf the deep eddies were much weaker, but they too were partly steered along the
topography. Compared within the Northwest Gulf array, the deep eddies were more energetic
offshore of the 2000 m isobath. Deep eddies entered the Northwest Gulf region from the east and
did not appear to originate locally. In the Northeast Gulf, five strong deep eddies passed through
the southern deeper portion of the array. The deep eddies were episodic, associated with intervals

when upper-layer Loop Current and Loop Current Eddies swept southeast through the array.
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Diagnostic Studies of Vertical Coupling Between Upper and Deep Circulation

The Central and Northeast Gulf Arrays exhibited several examples of interaction between the
upper and deep ocean: blocking, joint propagation of upper and lower layers, and baroclinic
instability. Upper and lower layers are dynamically coupled when their motions stretch or
squeeze the opposite layer. The lower-layer response to vortex stretching/squeezing tends to
produce respectively positive/negative relative vorticity to balance the changes in thickness.
Figure 7 illustrates such a case in the Northeast Gulf Array, in which a deep anticyclone led and
deep cyclone trailed as the Loop Current or Loop Current Eddy swept southeast through the
array. This pattern repeated itself five times in 2005.

Note that the above description of local vertical coupling is highly idealized: we have neglected
the effects of topography, a spherical earth, and lower-layer advection of a background potential
vorticity gradient, for example. We refer the reader to Cushman et al. (1990) for a more in-depth
discussion, and we point out that Welsh and Inoue’s (2000) modeling study reveals the joint
spin-up of lower layer eddies beneath strong translating upper-ocean features. The lower layer
potential vorticity (PV) can be diagnosed as follows, where PV = (f + {)/H, and f = Coriolis
frequency (planetary vorticity), { = relative vorticity, and H = lower layer thickness from the sea
floor to the base of the thermocline (6°C isotherm depth). Figure 8 shows the time series of terms
contributing to the PV balance at a point where the deep eddies spun up and passed repeatedly.
The local PV was not constant but varied through a range of about 25%, and this variation, PV
tendency 0 PV/ot, was balanced by PV advection, u (0 PV/0x) + v (0 PV/oy).

2005/07/30 2005/08/1 2005/08/03 2005/08/05
o | : N - ) I % " T 1
=S5 e
28.2°N " o
. '}, g QM""-..HI --...-___.-'-r - ol
28N ¢ 2 ?. == \;\ ﬂ_" v
4] '*' o
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Figure 7. Case study of a lower-layer cyclone leading an upper-ocean cyclone [30 July — 05 August 2005] as
the crest of the Loop Current withdraws southeastward in the Northeast Gulf array. Maps of
surface streamfunction (bold contour lines) superimposed upon shaded contours of pressure at
1500 m depth for four separate days. In both fields highs are represented by red hues and lows
represented by blue hues. Bathymetry contoured every 1000 m depth is denoted by the gray
lines. PIES sites indicated by diamonds; current meters by circles.
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Figure 8. Potential vorticity terms are diagnosed as time series at the location within the Northeast Gulf
array indicated by the red star. As the cyclone of Figure 7 passed in July-August a local peak PV
can be seen in the upper panel. The PV tendency is balanced by PV advection, as shown in the
lower panel.

In events where deep eddies are vertically coupled to the upper loop current, an array like this
allows diagnosis of dynamical balances. The time scales, spatial scales and PV balances of deep
eddies all support that they exhibit the dynamics of topographic Rossby waves (TRWs).

Future Observational Work

A current meter option has been added to the PIES, called CPIES, because many PIES
applications also required deep current measurements. The CPIES includes the Doppler current-
sensing head of the Aanderaa RCM-11, buoyed 50 m above the PIES to be out of the bottom
boundary layer. It now includes acoustic release, a 4+ years deployment capability, and acoustic
telemetry capability. Two experiments funded by ONR and NSF in the Kuroshio and Kuroshio
Extension successfully deployed and recovered arrays of CPIES.
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Slide 2
Three Programs Funded by MMS to SAIC and EHI

Octobar 2004 — August 2005 Decermber 2004 — January 2006

30N
28°N

PIES
CURRENT METER

26°N|

24°N

22°NI| L

20°N

Slide 3
These three arays map the cumrents throughout the water column.

Mesoscale resolution allows the diagnoses of dynamical quantities.
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PIES: Pressure Recording inverted Echo Sounder

+ Sits at the ocean bottom.

* Emits 12kHz sound pulses.

* Measures round trip travel times of
acoustic pulses to sea surface and back.

= Measures botiom pressure.

Round frip traved tirne is a proxy for veriical profies of iemperatune and salinity.
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Hydrography establishes the proxy relationship
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Cubic smoothing splines fit create a gridded look-up table.
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Example: Look-up a temperature profile,
given tau,, .00 from a cast
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Profiles agree well with measured profiles
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PIES-determined T/S profiles compare well with profiling floats.

surface velocity and height 2003/10/11

28°N] Eddy Sargassum propagated
i through the central armay and
27.5°N
was also sampled by a
27°N profiling float.
ol
26.5°N 1 30°N e
26°N'; 28°N :
26°N
24°N) |
22°N) |
O fioat float
200| PIES 200| PIES
E 400| | E 400
= £
(=8 | (=5
2 600 | & 600
800| 800
0 =0 w " 3 38
temperature [°C] salinity [psu]

42




Slide 10

PIES-determined T/S profiles compare well with profiling floats.

surface velocity and height 2003/10/11
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Northeast Gulf PIES array successfully maps temperature

PIES-MAPPED temparature at 200 dbar
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PIES array allows us to map geopotential and geostrophic shear
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Bottom pressure combined with current measurements ...
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PIES amray allows us map full water-column circulation

PIES-MAPPED maridional valocity
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Excellent agreement between mapped and measured velocity.

— Zonal Velogity Meridional Velocity
2 0770 dbar | [PiES "LSU Maoring
=
= (0 |
E 50 ms difference 9.2 cm s~ mns difference 6.0 cm s~
-
= =
0580 dbar
0 mwxef* - W -
-1 =1
_gglB:2cms | lagems |
50 4677 dbar ‘
_50 28cm 5 ] | | A.T¢cm 5" |
May Jul Sep Nov Jan Mar I'-."Ia?;a]ul Sep Mov Jan Mar
200 2005 04 2005
28°N Fi
3 . b
E?GN‘ " - b -
Y e -_': w 5 [
26°M Lo o T
a2°wW 90w

45




Slide 16
Eddy kinetic energy (EKE) distribution across the Gulf
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High surface EKE associated with Loop Current and Loop Current Eddies
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Slide 18
Strong deep EKE found in northeast Guif and south of the Sigsbee

escarpment with lowest EKE in the northhwest Guif.
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Slide 19
Deep edkdies are steered by topography.
Open question — How does the upper ocean steer deep flow?
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Slide 20
Movie of circulation in the central Gulf

2003/04/09
EB“N'E-'-. - Colored lines — Sea
' Surface Height
27.5°N Filled contours — Deep
streamfunction
27°N Vectors — Deep
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Deep eddies steered by topography

= Cyclones approach Sigsbee Escarpment and
deflect westward.

= Anticyclones approach Sigsbee Escarpment, stall
and weaken.

= This behavior results from complimentary (cyclones)
or compeling (anticyclones) effects of dipole self-
advection and topographic beta_
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Deep eddies steered by topography

Cyclones approach Sigsbee Escarpment and deflect
westward.

-Anticyclones approach Sigsbee Escarpment, stall
and weaken.

This behavior results from complimentary (cyclones)
or competing (anticyclones) effects of dipole self-
advectlion and topographic beta.

Slide 23
Cyclone: dipole self advection and topographic beta reinforce each other.

image effect topographic 3,
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Examples of interaction between upper and deep circulation.

Blocking: The propagation of a deep cyclone is
temporarily halted when it encounters Eddy
Sargassum.

Joint propagation of upper and lower layers:
The lower-layer responds to vortex
stretching/squeezing by upper ocean.

Baroclinic Instability

Slide 25

Examples of interaction between upper and deep circulation.

Blocking: The propagation of a deep cyclone is
temporarily halted when it encounters Eddy
Sargassum.

Joint propagation of upper and lower layers:
The lower-layer responds to vortex

stretching/squeezing by upper ocean.

Baroclinic Instability
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Propagating strong upper-ocean features stretch/
squash lower layer and spin up deep eddies.

lower layer lower layer

h increases h decreases

: Increases C decreases
= L

LO MIGH
- -
- > 4 -

deep eddies
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Northeast Gulf: Deep eddy events often associated
with upper Loop Current or Loop Current Eddy.
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Diagnose lower-layer potential vorticity to
determine whether there is local vertical coupling.

pr-I*%
i
f =Conolis parameier
& = lower - layer relative vorticity
H = lower - layer thickness (6 degree isotherm to bottom)
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Examine lower-layer thickness and refative vorticity ...
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Examine lower-layer thickness and relative vorticity...
time scales differ, they don’t simply balance each other locally

2005/08/03 lower-layer thickness
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Advection of background PV is mportant term in the balance.

2005/08/03 potential varticity (PV)
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Advection of background PV is mportant term in the balance.

2005/08/03 potential vorticity (PV)
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in events where deep eddies are vertically coupled to the upper
lkeop curment, an ammay like this allows diagnosis of dynamical balances.
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Advection of background PV is mportant term in the balance.
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The time scales, spatial scales and PV balances of deep eddies
all support that they exhibit the dynamics of TRWs.
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Conclusions and looking to the future

Arrays of PIES and current meters with mesoscale
resolution successfully map the full-water column
circulation.

*

Deep eddies are strongly steered by topography.

Potential vorticity analysis useful to diagnose
upper-deep coupling {two-way).

L]

L]

Successful experiments with amay of CPIES ...

Slide 35

CIRIES:
R sl pressure recoralinmg
e et csaclinge sanmmiler

Measures bottom cument.
(50 m off bottom)

Measures boltom pressure.

Emits 12kHz sound pulses.
Measures round trip travel times of
acoustic pulses to sea surface and back.

Successful deployment and recovery in
Kuroshio and Kuroshio Extension

experiments

55



CANEK: 10 YEARS OF OCEANOGRAPHIC OBSERVATIONS IN THE
CARIBBEAN SEA AND GULF OF MEXICO

Julio Candela, J. Sheinbaum, J. Ochoa, and A. Badan, CICESE

Slide 1

Gulf of Mexico

Julio Candela, J. Sheinbaum,
J. Ochoa, and A. Badan

CICESE, Ensenada, B.C., Mexico
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Slide 2

Loop Current behavior in the Gulf of Mexico.

Eddies in the western Gulf of Mexico.
Circulation in the Mexican Caribbean Coast.

Response of the Mexican Carnbbean to the
passage of Hurricane Wilma.

Slide 3
Absolute Altimetry: SL Height and Geostrophic Currents
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Canek 4

Aupusi 2 in Sepierser 11, 1908

B! et 300 el B PRS0
CACESE

CANEK Program, Started December1996
13 cruises up to now: Canek 0 (Dec "96) to Canek 12 (May "06)
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FTE “Mﬁ
Along cruise ship-board ADCP il !
Spaect [mia)

cumrent measurements at 50 m depth.
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Yucatan
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Yucatan
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Slide 8
Mooring locations within the CANEK Program
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Mooring locations within the CANEK Program
2& i i i i i=th | i L i i
.l “{1
GULF '. _ "
24- OF ; Y :
= MEXICO At
=
21 - L 7 '
CAMEK 5 /2
20
712000 % ,
19- ¥ 2 Bl L
| * DEEPSTAR
= Present location, « Previous kocalion e
17— Dpth contnrs at 550, 1008 2000 are 3000 meters fi Sl‘lpporl

: . e et
98 97 96 95 94 93 92 91 90 B9 88 &7 86 B85 84 83 B2
Longitude (\West)

61



Slide 10
Mooring locations within the CANEK Program
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Mooring locations within the CANEK Program
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Mooring locations within the CANEK Program
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Mooring locations within the CANEK Program
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Mooring chatiﬂns within the CANEK Program
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CANEK 4, August 1999 Deployment in Yucatan Channel

Stralt of Yucatan
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CANEK 4 deployment (8/1999-6/2000)
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CANEK 4 deployment {8/1999-6/2000)
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CANEK 5 deployment (7/2000-6/2001)
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CANEK 5 deployment (7/2000-6/2001})
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Sheinbaum et al- fig1
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C anek:Obseryvations

Herizomal vorkchy flux above 6.6 °C
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Absolute Altimetry: SL Height and Geosirophic Current (AVISO)
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Moaoring locations within the CANEK Program
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Absolute Altimetry: SL Height and Geostrophic Currents
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fes observadas a lo largo del eje principal de variacion.
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_CHKT Mean Current @~30m Mode 1 Maode 2
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Canal de Yucatan
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Latibde

Absolule Albmelry: 5L Height and Seostrephic Currenls
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Absolule Albmelry: 5L Height and Seostrephic Currenls
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Absolule Albmelry: 5L Height and Seostrephic Currenls
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Principal Axis Current along

Chinchorro Channel at 30 m depth

Principal Axis Current at Chinchorro Channel, depth ~30 m.
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‘I'I'neflﬂwalongﬂxeﬂfaribheaﬁ Eb&siofMemmm
dominated by the Yucatan Current and is strongly
modulated by the passage of meso-scale eddies.

« Notably, Hurricane Wilma affected the ocean
instantly under its path to depths of 500 to 1000 m.

« Some humcane periurbations, like the reversal of
the flow in Chinchorro Channel, lasted for over a
month after Wilma’'s passage.
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UPPER LAYER SUBSURFACE JETS AND INERTIAL CURRENTS
IN THE NORTHERN GULF

Peter Hamilton, Science Applications International Corporation

Inertial Currents

Inertial period fluctuations of the currents dominate the high frequency (periods of less than 40
hours) part of the spectrum in the upper layer of the slope and deep basin. Diurnal and semi-
diurnal tidal currents are essentially negligible even though diurnal surface tides are evident in
sea level and the inertial period (= 2n/f, where f is the Coriolis parameter) of ~ 26 hours over the
northern Gulf slope is close to that of the diurnal tide. Clockwise rotary motions (viewed from
above) characterize inertial-internal waves. Inertial motions are primarily forced by variable
surface winds. This includes winter and tropical storms. The inertial wake in deep water, with
stronger oscillations on the right hand side compared to the left of a hurricane track have been
extensively studied and modeled (Price 1981; D’Asaro et al. 1995). Inertial currents may also be
generated by geostrophic adjustment processes and thus may be generated by eddy-eddy and
eddy-topography interactions.

The relative vorticity of the background flow affects the frequency of the inertial response such
that anticyclones and cyclones lower and raise the effective Coriolis parameter, f,. An example
of this is given in Figure 9 where two adjacent ADCP moorings in the NW Gulf show different
frequency responses that are shifted by the vorticity of the cyclonic and anticyclonic eddies in
which they were located for most of the month of May, 2004. Anticyclonic eddies can trap
inertial oscillations because f increases with depth and in the cyclonic zones on the outer edges
of the eddy, and internal-inertial waves cannot propagate with intrinsic frequencies lower than
the local f. In Figure 9, the kinetic energy increases with depth between 35 and 125 m for
location U3 in the anticyclone. Kunze (1986) discusses enhanced inertial oscillations just above
the thermocline in a warm-core ring, and similarly Donohue et al. (2006) show strong subsurface
inertial currents, with a central frequency ~ 0.9f, within eddy Sargassum, which detached from
the Loop Current in August 2003.

In May 2005, an isolated cold front crossed from the NW Texas coast to the SE over the NW
Gulf moored array (see Figure 9 for locations). Ten out of the 13 moorings had upper-layer 75
kHz ADCP’s that spanned 40 to 420 m depths. Thus, the response of the upper-layer to relatively
uniform isolated strong wind impulse could be investigated. The results suggest that there was
some zonal uniformity of response that was banded meridionally with alternating high and low
inertial amplitudes with the highest energies on the northern edge of the array. Because the group
velocity of internal-inertial waves is at a declination to the horizontal and directed towards region
of lower f, i.e., southwards, the implications are that north-south banded nature of the amplitude
response could be the result of destructive interference with the horizontally propagating waves.
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Figure 9. RH panels show the kinetic energy spectra, in variance preserving form, for currents at 3 depths
at U3 and U4 moorings. The spectral peaks are shifted from the local f by the background
relative vorticity (units fractional f) contoured in the LH panel, which also shows the 30-day
mean 40-HLP currents at two depths.

There was no obvious relationship of the spatial variability of the inertial currents to the
underlying eddies. Similar results were found for a sequence of winter storms for the same array.

Subsurface Jets

DiMarco et al. (2004) discuss the possibility that high-speed subsurface currents, with speeds >
50 cm/s, can occur between 150 and 350 m depth, while surface currents were weak. Drilling
operators had reported cases of shutdowns caused by such high-speed subsurface flows, which
have become known as jets. However, the available database was plagued with instrumentation
problems and results were inconclusive on whether such phenomena could occur in deep water.
Vertically propagating inertial-internal waves could produce higher speeds at depth than at the
surface, and DiMarco et al. (2004) cite the case of Hurricane Georges where deep inertial energy
occurred over the DeSoto slope several days after the passage of the storm. However, the
available database, after excluding inertial events, suggested that if such jets occur, then they
seemed to be associated with the edges of anticyclones that were possibly interacting with an
ADCPs in the upper 400 to 500 m of the water column might have a chance of capturing such a
adjacent cyclone or frontal eddy. Only moorings that had continuous current profiles from
subsurface jet. For six such moorings in the central Gulf that give a total of ~ seven years of
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Figure 10. Unfiltered speed from the 450 m ADCP at T5 for the indicated interval.

measurements, no significant jet-like events were found. However, in the NW Gulf upper-layer
ADCEP records, a number of subsurface jets that fit the criteria of maximum speeds > 50 cm/s
occurring between 150 and 350 m depth with lesser speeds near the surface, have been found. Of
the 17 subsurface jet events identified in the 450-m ADCP records, 10 are considered to be
primarily inertial events, and seven are non-inertial. Other than having more 450-m ADCP years
(14) in the western Gulf than in the central Gulf, it is not yet clear why the NW part of the slope
has more subsurface jet events than the central or eastern parts of the slope.

Figure 10 shows the current speeds in the upper 450 m of the water column at mooring T5 in the
NW Gulf (see Figure 11 for location). This clearly fits the criteria for a subsurface jet with
speeds exceeding 70 cm/s around 150 m depth, with much lower speeds at the surface (~ 40
cm/s). The time series of upper-layer temperatures for this event show the coldest water arriving
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Figure 11. 1-day mean 3-HLP temperature at 150 m and currents at selected depths for 26 February 2005,
0000 GMT. The currents are plotted as 3D pseudo profiles. The location of the T5 mooring is
noted by the gray arrow.

at 250 m, one to two days before it arrives at 75m, which implies reversing horizontal thermal
wind gradients above and below the jet. This indicates that this event is primarily geostrophic.
Maps of the horizontal temperature and velocities (Figure 11) show that TS was located in a cold
cyclone, which was interacting with a larger warm anticyclone to its south. The interaction
causes the vertical center axis of rotation of the cyclone to be tilted towards the anticyclone, and
it is this distortion of the density field that causes diverging isotherms that support a geostrophic
subsurface jet. A number of other similar cases that also involve cylone-anticyclone interactions
occur in this NW study.
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Eddy Sargassum Inertial Event
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May 2005
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Relative Vorticity and Daily Mean Currents
for May Incrtial Event
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Inertial Band
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Water Column
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Slide 11

Inertial Currents: Summary

= High Frequency Dommaited by mertial penod cumrents.
= Eddy field vorticity affects response penod
* Cyclones raise f,
+ Anticyclones lower f,
+ Major LC eddics can trap inertial energy
= Pnmanly honzontal incrtial oscillations m the near-surface
convert to vertical oscillations at depth.

= Mendionally imhomogencous response to smgle wind event
across NW Gulf slope.

= Generation by:
+ Storms, hnuricanes, geostrophic adjustment
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Subsurface Jets

Industry reports of effects on decpwaler ngs of apparent
strong subsurface flows while ncar-surface 1s quiescent.

IDiMarco et al. (2004) mvestigated ~ 10 histonical
observations of subsurface jets. Results were inconclusive
prmarily because of measurement issues.
Vertically propagating mertial-mnternal waves can produce
subsurface flow maxima (e g_, the T3 inertial event).
Using 75kHz ADCPs deployed at 450 to 500 m, non-
mertial subsurface current maxima between 150 — 350 m
have been found:

» Central Gulf: 7-years from 5 moorings: 0 jets

* NW Gulf: 14-years from 10 moonngs: 7 jets
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Temperature and
Hourly Current
Vectors for TS
Subsurface Jet
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T5 Cyclone-Anticyclone Interaction
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Tilt of Cyclone Vertical Axis Towards Anticyclone
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U4 Speed (cm/s)
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Jet Event
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Temperature and
Hourly Current
Vectors for U4
Subsurface Jet
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U4 Cyclone-Anticyclone Interaction
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Tilt of Anticyclone Vertical Axis
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Subsurface Jets: Summary

= 7 Subsurface non-mertial jets observed from 10 ADCP
moonngs deployed for 18 months.

= Associated with mteractions of cyclone-anticyclone pars.
* Occur on the cyclonic side
* Reversing thermal wind horizontal gradients with depth
* Non-uniform temperature ficlds caused by tilting of the
eddy’s vertical axis
= On the steep Mexican slope, subsurface jet observed m lower-
half of the column m 500 m water depth.
= Bottom water is cold, but cyclone not observed
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INTRA-AMERICAS SEA OCEAN NOWCAST/FORECAST SYSTEM (IASNFS):
AN OPERATIONAL REAL-TIME NOWCAST/FORECAST SYSTEM FOR
INTRA-AMERICAS SEA

Dong S. Ko, Naval Research Laboratory

Slide 1

. Intra-Americas Sea
Dong S. Ko

MNaval Research L aboratory
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MNowcast
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«Longitucle : BB W - 55 W Latitude :S5N-31N

* Horizontal Resolution : 1/24 Degree {~ 6 Km)

+ Vertical Resolution : 40 Layers (19 Layers on the Shelf)

* Forced with NOGAPS Wind, Air Pressure and Heat Fluxes
« Coupledto NRL Global NCOM

» Assimilation of Satellite Altimetry and SST/SS5
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s .
IAS NFS ancast
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iSealllevel'Forecast Compared tolNOS
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RWS Prediction Error
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NEW MEASUREMENT TECHNOLOGIES AND DATA ANALYSIS TECHNIQUES

John Toole, Woods Hole Oceanographic Institution

Slide 1

New Measurement Technologies
and Data Analysis Techniques

John Toole, WHOI

USA-Mexico Workshop on the Deepwater
Physical Oceanography of the Gulf of Mexico

26—28 June 2007
New Orleans, Louisiana
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Measurement Technologies

« Moorings + Satellites

subsurface » Radiowave Oceanography
surface

« Profiling Floats

» Gliders

+ AUVs

» Surface Drifters

* Mixing Experiments

Slide 3

New Analysis Techniques

» assimilation
adjoint, nudging, Ol

» forward modeling
validated with observations

» theory
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Observational Technologies

« Satellites
» Radiowave Oceanography
surface
Profiling Floats
Gliders
AUVs
Surface Drifters
Mixing Experiments
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Profiler Mooring
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Upper Ocean Sampling
Plus Telemetry

Moored Winch

(Pickart. Frye ...)
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SALP — Submerged, Autonomous Launch Platform

Slide 11

Observational Technologies

subsurface

Profiling Floats
Gliders

AUVs

Surface Drifters
Mixing Experiments

« Satellites
+ Radiowave Oceanography.
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Surface Buoy
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Observational Technologies

« Satellites
subsurface « Radiowave Oceanography

Profiling Floats
Gliders

AUVs

Surface Drifters
Mixing Experiments
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Purposely Not Deployed in
Gulf of Mexico at Present
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EM-Apex Profiling Float (Sanford-Webb) N

Slide 19

Velocity Profiles Based on the Physics

of Motional Electromagnetic Induction

Velocity Is Measured by Motional Induction
The honzontal components of the motionally mduced ocean electnic
field as measured by sensors moving with the honizontal flow are
(Sanford 1971):

Vhga= - Fz (W(z) - v*) xk

where Vhga is the measured (apparent) potential gradient at a sensor
moving with velocity v, Fz 1s the vertical component of the Earth’s
magnetic field, o 1s electncal conductivity, v* 1s the vertically-
mtegrated, conductivity-weighted ocean velocity and & is the vertical
unit vector. Hence the measured voltage gradient can be
converted to a relative velocity profile. It 1s important to realize that
the measured velocity is relative to a depth-independent constant, not
to the motion of the profiler.
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EM-APEXs Dropped Ahead of
Hurricane Frances from C-130 Aircraft

GOES SST and the track of Frances; 2004

latitude

longitude
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ILeft: Float 1633: Right: Float 1634:

50'km to Right 100 km to Right

(Higher Wind) (LLower Wind)

UTE, August 1 to September 6, 2004
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Surface Gravity Wave Fit to EM-APEX =
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CLIVAR Mode Water Experiment
February—March 2007

Average Surface Stress Leg 1: 0.40028 N/m?
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S5T & surface velociy far Mar 10, 2007

CLIMODE
Feb—Mar 2007
EM-Apex Drifts

EMA Float Positions - CLIMODE 4
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EMA 1636 Mean Velocity Profile
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Observational Technologies

Moorings « Satellites

subsurface « Radiowave Oceanography.
surface

Profiling Floats

AUVs
Surface Drifters
Mixing Experiment
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Slocum,
Spray, and
Seaglider
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Glider Transits the
Gulf Stream
Breck Owens
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Observational Technologies

Moorings + Satellites
subsurface » Radiowave Oceanography
surface

Profiling Floats

Gliders

Surface Drifters
Mixing Experiments
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ABE and

Slow: 0—1.4 Knots
20-40 km Range
Large Payload
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Observational Technologies

Moorings « Satellites
subsurface » Radiowave Oceanography.
surface

Profiling Floats

Gliders

AUVs

Mixing Experiments
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STATUS OF GLOBAL DRIFTER ARRAY
- June 11, 2007 .=
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Observational Technologies

Moorings
subsurface
surface

Profiling Floats
Gliders

AUVs

Surface Drifters

Satellites
Radiowave Oceanography
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Turbulence Instruments

» Full-depth profilers (free-fall)
« Rockland Scientific
» HRP-II
» Upper-ocean profilers (loose tethered)

+ AMP Gregg (APL/UW)
» European companies

» Towed systems
» Marlin (OSU)
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Tinoer Relenge
Experiments

Jim Ledwell (WHOJ)
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Ksr
L}

0.8-0.9 x 104 m?/s.

3 4 5 &
NORMALIZED C - €, (iM) x107
Average vertical distribution of tracer about the injection density surface east of

the Caribbean (solid line) and within the Caribbean Sea (dashed line) after 10

months. Averaging has been done in de vace and the profiles converted to

physical space thr ouoh the mean density pmhle for the station east of Barbados.
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BREAKOUT SESSION SUMMARIES

The purpose of the USA-Mexico Workshop on the Deepwater Physical Oceanography of the
Gulf of Mexico was (1) to determine future observational plans and needs for modeling
information in USA and Mexican waters, (2) to determine future modeling plans and needs for
observational information in USA and Mexican waters, and (3) to initiate intensive USA
coordination with Mexico in planning and implementing future physical oceanographic modeling
and data acquisition in the Gulf of Mexico. Breakout sessions were conducted to fulfill these
purposes.

OBSERVATIONAL PLANS AND NEEDS FOR MODELING INFORMATION
IN USA AND MEXICAN WATERS (S-1 & S-3)

Co-Chairs:  Dr. Steven DiMarco, TAMU
Dr. Antonio Badan, CICESE
Rapporteur:  Dr. Walter Johnson, MMS

Leading Gulf of Mexico processes of concern include the Loop Current (LC) position, transport,
and stability; Loop Current Eddy (LCE; anticyclone) shedding and translation; Loop Current
frontal eddy (LCFE; cyclone) dynamics; LCFE generation at (and downstream translation from)
Campeche Bank; deep water general (mean) and transient (e.g., Topographic Rossby Waves
(TRWs) and deep eddies) circulation; and dynamic mechanisms coupling the deep and shallow
Gulf currents. While satellite radar altimetry and thermal and color imagery can serve to
delineate shallow Gulf general circulation and eddy features, they are ineffective for this purpose
in the lower layer of the deep Gulf. There is special interest in the response of the Gulf to
extreme wind events; e.g., air-sea interaction in the upper 200 m, near-surface (upper 10 m)
processes (e.g., near-inertial motions, frontal convergences, momentum transfers, heat content
and fluxes, and mixing), and open ocean upwelling and turbulent entrainment. Reflecting the
predominance of steep continental slopes (escarpments) in the Gulf, there is also a special
interest in escarpment dynamics, including LC-topography interactions, generation of bedforms
and furrow currents, and shelf/slope vertical exchanges of nutrients, biomass, heat, particles, etc.
that couple biogeochemical and circulation processes through, for example, wintertime cascading
of shelf waters at the shelfbreak of the Northern Gulf. With a sill depth of 1,900 m and the
deepest depth reported in the range of 3,750 to 4,380 m, the flushing time and flushing processes
of the deep water are open questions. For example, deep ventilation of the water column must
play a role on time scales of a year and longer, but little is known about it.

Improvements in transport estimates are needed. A fully consistent set of simultaneous estimates
of volume transport through the Yucatan Channel and Straits of Florida (Key West to Havana,
Old Bahamas Channel, Northeast Providence Channel, and West Palm Beach to Settlement
Point, Bahamas) does not exist. Considering the nature of the variability, several-year time series
of de-tided daily values and a careful design of the sampling grid are needed. In particular,
CICESE colleagues may be able to help access Cuban waters, which would greatly facilitate
these transport balance studies.
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Influences on the LC and LCE shedding process from perturbations in the Cayman Basin
circulation, or further upstream in the IAS, are of interest.

The impact of strong storms on the open Gulf, including the LC and LCEs, as well as coastal
waters, is of great scientific interest and practical consequence to the offshore industry in
planning evacuations from its moored platforms. This topic requires attention to the upper ocean
heat content and wave field, as well as surface winds and currents and their variation in space
and time. The generation and vertical and horizontal propagation of near-inertial motions in the
presence of the LC and warm and cool core eddies and their interactions are significant. Storm
intensification over warm core eddies can be important. These transient, submesoscale processes
present space-time resolution challenges for both observationalists and modelers. These
challenges can only be met by a comprehensive approach, including air-deployable sensing
systems, airborne remote sensing, moored and drifiting buoys with ADCPs, thermistor strings,
etc. NOAA (NWS & OAR), Navy, environmental companies, and academia have much of the
required infrastructure; however, better coordination among these groups is needed.

A good example of improved coordination is the spatial array of real-time reporting ADCPs
attached to dozens of oil rigs in the Northern Gulf fostered by MMS, with the data management
provided by NDBC and cooperation from the offshore industry.

Another example is the present effort to coordinate MMS and PEMEX observational programs
across the deep Gulf, including moored current meter and PICES arrays and hydrographic (CTD)
transects. There is also hope for collaboration between American and Mexican circulation
modelers. And there is hope that the Gulf of Mexico Coastal Ocean Observing System Regional
Association (GCOOS-RA) and the Southeast Coastal Ocean Observing Regional Association
(SECOORA), both regional coastal ocean components of the USA’s Integrated Ocean Observing
System (IOOS), will become coordinated and work with Mexican and other adjacent entities in
the Caribbean Sea.

PEMEX is conducting studies of Campeche Sound where surface drifters have found cyclones
with current speeds of 100 cm/s and other currents up to 100 to 150 cm/s. PEMEX is also
conducting studies of Campeche Bank where an ultra-deep cyclone has been found propagating
to the west. PEMEX is pursuing exploratory studies on the Western Gulf Shelf with a large
number of moorings and needs to coordinate with USA, including for acoustic sources used for
tracking floats in deep water. The long-term moorings need to be maintained for 5 to 10 years for
stable statistics. Mobile moorings are used for exploratory purposes. USA-Mexican collaboration
could include coordination of hydrographic transects and moorings.

An LSU group (viz., Inoue, Welsh, and Rouse) is maintaining a long-term current meter mooring
under the LC. Their results will help design and interpret future studies in the Northern Gulf.

Coastal HF radars have proven to be useful for estimating synoptic maps of surface currents in
the coastal ocean, especially within the IOOS program. There is potential for extending their use
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to offshore platforms, which would require cooperation with the offshore industry and various
agencies.

There is no other observational subsystem more important for estimating the space-time evolving
quasi-geostrophic circulation of the LC, LCE, etc. than the satellite radar altimeters. Hence,
support of the satellite altimeter constellation should be shown by the ocean community at every
opportunity.

The Gulf of Mexico modeling strategy should include utilization of an (atmospheric) mesoscale
meteorological model, wind-current interactions in momentum flux estimates, and independent
observations for heat and moisture fluxes to validate and verify model estimates of these fluxes.

Physical-biological interactions of significance in the Gulf of Mexico include open ocean and
coastal upwelling, the impact of near-bottom currents on benthic communities, and the affinity of
whales for cyclonic eddies in the Western Gulf.

Highest priority was given to process studies of (1) eddies and fronts, (2) lower layer circulation,
(3) Loop Current, (4) upper layer circulation (including air—sea exchanges and responses to
severe weather events), and (5) biogeochemical coupling.

A model-based re-analysis using the observations from 2001 to 2005 would be valuable for
diagnostic studies.

The MMS NTL (Notice to Lessees) No. 2009-G02 regarding the Ocean Current Monitoring
dataset has potential for further enhancement of sensor suites; e.g., adding air-sea sensors.
However, there are stewardship issues to be resolved.

From a numerical modeling perspective, data from the NDBC, TABS, and COMPS buoys are
valuable for forcing, verification and validation, and/or data assimilation. However, there is
concern for adequate resources to support the manpower needed for analysis.

There is a need for a specific Loop Current study with the following components:

* moored sensor array deployed for mapping purposes

* deep Lagrangian floats

+ gliders with CTDs (profiling from the surface to 1 km deep, and deployed for
up to six months), including in the Mexican waters of the Southwestern Gulf

* AXCTDs (air-deployed CTDs)

» AXCPs (air-deployed electromagnetic profilers for measuring currents)

» surface drifters, especially for the data void in Mexican waters off the western
Yucatan Peninsula

Satellite remote sensing (esp. radar altimetric SSH and SST) is a viable observing system
component. Air-deployed sensing systems are invaluable for adaptive sampling of the LC, LCEs,
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and LCFEs. Coastal HF radars can be useful for making synoptic surface current maps for the
deep Gulf, especially in the Northern Gulf with its relatively narrow shelf.

For the MMS transect study, the survey lines should extend across the Gulf with three parallel
meridional lines between 88 and 91 W. The lines should be, as much as possible, perpendicular
to the bottom topography. And their selection and design should be based upon the space-time-
amplitude scales of the prevailing processes. The transects should be sampled with gliders and
PIES. The mean and variable flow through the transects would be observed. However, the
observations would not be sufficiently coherent for mapping TRWs and eddies. Yet, they could
provide information about Mississippi Canyon of use to whale and other ecological studies. It is
curious that NOAA’s global GOOS surface drifter and ARGO profiing float observing systems
aim to estimate meridional transports, yet they are missing from the Gulf.

For long-term monitoring, MMS could consider the NSF OOI concept of “Endurance” (i.e.,
fixed positions) and “Pioneer” (i.e., movable positions) arrays. MMS should also consider CPIES
long-term stations along altimeter paths, which would constitute a sparse array. PIES arrays in
the Yucatan Strait and the Straits of Florida might facilitate a transport sensitivity study.

MODELING PLANS AND NEEDS FOR OBSERVATIONAL INFORMATION IN USA
AND MEXICAN WATERS (S-2 & S-4)

Co-Chairs:  Dr. Robert Weisberg, USF
Dr. Julio Sheinbaum, CICESE
Rapporteur:  Dr. Carole Current, MMS

Fundamental Questions

The first task was to identify the physical oceanographic questions that should be addressed to
meet the implicit objectives of breakout sessions S-2 and S-4. These objectives were to formulate
modeling plans and address and prioritize needs for observational information in USA and
Mexican waters.

Although many possible questions were considered, the most necessary questions were
determined by identifying and prioritizing crucial information gaps in Gulf of Mexico physical

oceanography.

Three major physical oceanographic questions (Table 1) that remain substantially unanswered in
the Gulf of Mexico were identified.
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Table 1. Major Scientific Questions

 What controls the Loop Current evolution and eddy shedding processes in the Gulf of
Mexico?

* What are the energy cascades from the Loop Current and its eddies to other motions: TRWSs,
vortices, subsurface jets, and other ocean processes, including the fluxes of energy through
and the dissipation of energy within the Gulf of Mexico?

» Isthere a deep, coherent mean ocean circulation in the Gulf of Mexico?

Processes that control the growth and penetration of the Loop Current in the Gulf of Mexico, as
well as those governing eddy shedding frequency and location, remain uncertain at present. The
Loop Current and associated Loop Current Eddies are a source of tremendous energy within the
Gulf of Mexico, and the processes such as Topographic Rossby Waves (TRWs), vortices,
subsurface jets, and other ocean processes by which this energy moves through the Gulf and
eventually dissipates need further investigation. Evidence indicates that a deep mean cyclonic (or
anticlockwise) flow exists at 2,000 m depth around the perimeter of the Gulf (Sturges et al.
2004).

However, the mean flow is not known throughout the deep Gulf of Mexico at most depths.
Future Gulf deep ocean observations should determine whether or not a deep, coherent mean
ocean circulation exists.

The modeling program formulated to deal with the questions of Table 1 is discussed in the next
section, Modeling Program. Observations needed in support of this modeling program are
discussed in the final section, Observations in Support of Models.

Modeling Program

Modeling plans for USA and Mexican waters that are designed to answer the questions presented
in Table 1 were discussed and formulated. Elements of the modeling program that emerged are
listed in Table 2 and described and discussed in this section.

A modeling program that is conjoined with a data acquisition effort in a unified modeling and
observational program can be established and operated using the best available observational
database relative to a given period of time. Modeling and observational studies should be
done simultaneously and cooperatively to improve modeling results. Although conjoined
modeling and data acquisition efforts are recommended, it is with full knowledge that this
interaction is not always easy.
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Table 2. Attributes of Modeling Program

* The modeling program should be conjoined with the observational program.

» The modeling component should encourage the exercise of several different model
frameworks (models and data assimilation schemes) and modeling groups.

» Models all require diagnostic analysis to define the kinematics, dynamics, and energetics of
the eddy shedding processes and the energy dissipation within the Gulf of Mexico; i.e., how
do the models themselves work and what do they tell us?

* Model-observation and model-model comparisons should be performed, including the
development of appropriate metrics on which to base these comparisons.

* Model-observation comparisons should include process diagnoses as model validations.

About 20 different numerical models are presently available that have been adapted for
simulation of circulation within the Gulf of Mexico, although simulations by some, such as the
Princeton Ocean Model (POM) (and its derivatives) and the Hybrid Community Ocean Model
(HYCOM), often may be more useful than simulations by others. Some models are better
adapted to certain applications than others; for example, operational models tend to be relatively
simple, robust, and efficient, but may not give the best results for research purposes.

A unified circulation model of the Gulf may be developed in the long-term future, but it may be
better at present to encourage three to five of the 20 models. Much is learned from differences
between models, though the modelers probably differ more in their approaches than the models
per se. Hurricane prediction depends on an ensemble of models but at the present stage of
development, a solidly funded modeling base must precede any later consideration of ensemble
modeling.

Models should focus on triggers of high energy events such as eddy spawning and LC intrusions.
Objectives of Gulf of Mexico process modeling should include description of the kinematics and
energetics of eddy shedding, as well as relevant dynamical balances. Eddy shedding processes
are very relevant to the MMS mission for several reasons, including the effects of LCEs on oil
and gas production in the Gulf.

The Gulf circulation may often behave as a two-layer system, and this concept can be helpful for
purposes of modeling and data analyses. Modelers should examine the processes that link upper
and lower layers of Gulf of Mexico ocean circulation. The interaction of these layers and energy
flow between upper and lower layers is of particular interest in deep waters. Frictional
dissipation of energy at the seafloor and other interactions of the deep layer with bottom
topography are relevant as well.
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Prediction of eddy shedding can be a challenging goal for numerical modelers. However,
difficulties in determining phasing of instabilities could be addressed with assimilation of
additional observational data.

Selection of model resolution is not a simple issue and should be carefully weighed. For some
problems, models of eddy-resolving mesoscale resolution are preferable, and, for other problems,
Topographic Rossby Wave (TRW) -resolving models, as an example, are used. Model resolution
can be selected with the objective of pinpointing the correct physical processes, or it might be
selected with the objective of enhancing predictability.

Physical oceanographic modeling is often dependent on the extent of observational data available
in the regions to be modeled. Boundary conditions, initial conditions, forcing functions, and data
assimilation all benefit from access to and usage of the best possible meteorological and physical
oceanographic data available within and around the model domain. Wind speed and direction,
river outflow, surface and subsurface temperature and salinity fields, satellite altimetric Sea
Surface Height (SSH) and other satellite observations, surface and subsurface current speed and
direction from Lagrangian drifters or Eulerian moored data, ocean current transport estimates,
and wave field data can all be helpful in setting up and operating a skillful simulation of surface
and subsurface ocean currents and circulation processes in the Gulf of Mexico.

A single model ensemble or multi-model ensemble approach is recommended, possibly by the
four groups that are running adjoint models in the Gulf. Errors for prediction must be addressed,
as well as uncertainties for interpreting observations.

Particular attention of modelers to thorough sensitivity testing is needed during this modeling
program. Sensitivity testing is too often neglected or minimized, especially in data assimilation
applications.

Model-observation comparisons should be performed for purposes of model validation and
verification and model intercomparisons. Model output should be compared with site specific
deep mooring data. The statistics ought to compare well. For example, modeled currents are
often too weak when compared with field observations, a deficiency which needs to be
established and dealt with in each model implementation. Large datasets that will soon be
available from three recent MMS studies need to be utilized further in detailed model/data
comparisons. These studies are The Exploratory Study of Deepwater Currents in the Gulf of
Mexico (Donahue et al. 2006), the Survey of Deepwater Currents in the Northwestern Gulf of
Mexico (Donahue et al. 2008), and the Survey of Deepwater Currents in the Eastern Gulf of
Mexico (field work is completed and draft report is in preparation).

Metrics of comparison for modelers should guide establishment of initial conditions, boundary
conditions, forcing requirements, and error estimates which will include model error estimates,
observational error estimates, boundary conditions and errors, surface forcing and uncertainty
estimation, and background or “first guess” estimation. The metrics needed by modelers are
further discussed below.
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Observations in Support of Models

Observational data from USA and Mexican waters that must be acquired in support of the
modeling program described in Table 2 were discussed (Table 3).

Table 3. Attributes of Observations Needed in Support of Models

* Rely on the PEMEX and CICESE arrays to obtain a large-scale, basin-wide set of moored
observations.

» Concentrate the USA full water column fixed array on the LCE shedding region.
« Plan for the use of gliders, floats, drifters, expendable profilers, etc. in addition to the usual
MMS instrumentation suite to maximize 3-D, subsurface data acquisition over a variety of

scales.

* Plan an adaptive sampling program to observe cyclonic/anticyclonic vortex evolution and
interactions.

» Consider conducting a deep Lagrangian observational and modeling experiment.
* Archive data at the regional data center at TAMU as well as at NODC.

» Encourage agency support for improved atmospheric forcing fields through IAS meso-scale
modeling.

e Encourage Mexican support for HF-radar coverage across the Yucatan Strait.
» Encourage Mexican support for the redeployent of a Yucatan Strait array.

» Ensure observations are fully 3-D because subsurface data are necessary for modeling.

Surface data are relatively easily available to modelers, but modelers also need data from
throughout the water column. Subsurface data are crucial for adjoint data assimilation efforts.
The Navy needs subsurface real-time data (ideally, full water column currents) for their
predictive modeling. Instrumentation used in the field observation program should include floats
and gliders, as well as Inverted Echo Sounders with Pressure (PIES), and current meter
moorings. Data throughout the upper 60 m of the water column are especially needed to model
the upper ocean response to hurricanes, cold front passages, and other storms. Technologies
suggested for acquiring these storm data include moorings designed to withstand storm
conditions, surface drifters, Profiling Autonomous Lagrangian Circulation Explorer (PALACE)
floats, expendable current and CTD profilers (e.g., EM-APEX), and High Frequency (HF) radar.
For example, HF radar-derived surface currents could be acquired from the Yucatan Peninsula
by the Mexicans.

What fraction of Loop Current energy is transferred into TRWs? Overall, the amount of energy

may be relatively small. This information will indicate how much of the study should be
involved with TRWs.
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Satellite datasets are currently used to guide adaptive data acquisition schemes. However, use of
additional field observations as well as modeling can be helpful in this regard. An adaptive data
acquisition/modeling program using gliders and air-deployable, expendable profilers could
resolve features such as cyclones (LCFEs) that form along the frontal edges of the LC. These
new technologies should be tried.

The Gulf of Mexico is a large domain for modelers, and obtaining sufficient data within this
entire domain is not easy. The LC is historically under-sampled, and more field observations in
the LC region are recommended. Measurements of deep cyclones of diameter <100 km are
needed to improve modeling of their origins, movements, and dynamics. Field observations of
shelf and deep circulation interactions would be useful to modelers. In addition, further field
observations covering the deep outflow of the Gulf would be useful. Scarcity of historical data in
the Southern Gulf is a problem that should be addressed in upcoming observational programs.
Possibly MMS could sponsor a Southwestern Gulf of Mexico data acquisition program, in
cooperation with PEMEX.

Modelers and modeling should play a role in planning data acquisition campaigns. Initialization
is crucial for process modeling in the deep ocean, and this should be considered in determining
the LC array locations. The array recommended by MMS (Figure 12C), if shifted slightly in
location, could reveal more about upstream conditions. The array recommended by SAIC (Figure
12A), if more spread out, would allow models to more easily assimilate data indicating the
position of the LC. However, modelers also would like a greater concentration of field
observations in the two LC areas where deep cyclones are thought to originate. The present
location of Mexican moorings (Figure 12B) and future Mexican plans for these moorings should
be considered in the array design.
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Figure 12. Observational array configurations discussed. A) Hamilton/SAIC suggested array configuration
including over two dozen PIES as well as moorings. B) Some of the currently operational (red)
and historical (green) locations of Mexican moorings. C) Lugo-Fernandez/MMS suggested
mooring array configuration.
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RECOMMENDATIONS

In addition to numerous recommendations embedded throughout this report, five salient, over-
arching recommendations are articulated below:

* Progress towards fulfilling the long-term goal of establishing a synoptic
analysis and retrospective re-analysis system for the Gulf of Mexico depends
upon conducting rigorous skill assessments of numerical models on a
continuing basis as the modeling subsystems and observing subsystems
advance.

* Hence, a suite of phenomenological as well as statistical and operational
metrics needs to be developed against which progress can be measured (see
Appendices I & 1I for a start).

* To complement the satellite radar altimeters, the real-time observing
subsystem needs to include (1) long-term moorings/stations; (2) CTD, etc.
profiling floats and gliders; (3) deep floats; (4) surface drifters; and
(5) offshore bottom pressure gauges to complement coastal tide gauges.

» Substantial and enduring progress will depend upon collaboration between
USA and Mexico, observationalists and modelers, researchers and operational
oceanography personnel, oceanographers and ecologists, and industry and
agencies. In particular, in the USA, in addition to MMS leadership,
engagement by the Navy, NOAA, NASA, NSF, and possibly EPA and
USACOE is essential.

* Provision needs to be made for periodic scientific communication between
American and Mexican cohorts concerned with the observing and modeling
subsystems of the Gulf of Mexico.
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APPENDIX I: IMPORTANT METRICS FOR GULF OF MEXICO
MODEL SKILL ASSESSMENTS

General Considerations

* Include both free-running simulations and data assimilative runs.

* Include subsurface metrics, as well as metrics for surface fields.

* Conduct sensitivity studies for every adjustable parameter, including open
boundary conditions, surface forcing, horizontal and vertical resolution, and
turbulence closures.

* Conduct process validations as the first priority and gridded-field verifications
as the second priority.

Major Processes to Be Validated

* LCE (i.e., large anticyclones/rings) statistics; e.g., pdf for eddy shedding

intervals, eddy paths, eddy translational velocities, eddy sizes and strengths,

and eddy decay rates and zones

» Similar statistics for upper ocean and deep ocean mesoscale cyclones and
anticyclones

* General energy levels, spectra, and energy fluxes

* Near-inertial motions and their generation, propagation, dispersion, and
dissipation

» Tidal energy on shelves versus deepwater

* TRW generation, propagation, dispersion, and dissipation

* Transports through Yucatan Channel and Straits of Florida, including
backflows, tidal fluxes, barotropic and baroclinic components, heat and salt
fluxes, water mass fluxes

» Lagrangian as well as Eulerian transports

* Vertical and horizontal structure of the LC

* Benthic mean and variable general circulation patterns
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APPENDIX II: KEY OBSERVATIONAL DATA SETS AVAILABLE
FOR MODEL SKILL ASSESSMENTS

1 — Current Meter Data under the Loop Current:

Inoue, M., S.E. Welsh, L.J. Rouse, Jr., and E. Weeks. 2008. Deepwater currents in the Eastern
Gulf of Mexico: Observations at 25.5°N and 87°W. U.S. Dept. of the Interior, Minerals
Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS
2008-001. 95 pp.

2 —Loop Eddy and Loop Current Altimetry Analyses:

Donohue, K., P. Hamilton, K. Leaman, R. Leben, M. Prater, D.R.Watts, and E. Waddell. 2006.
Exploratory study of deepwater currents in the Gulf of Mexico. Volume II: Technical
report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS
Region, New Orleans, LA. OCS Study MMS 2006-074. 430 pp.

McKone, K., N. D. Walker, and E. Weeks. 2007. Full-water column currents near the Sigsbee
Escarpment (91-92°W. Longitude) and relationships with the Loop Current and
associated warm and cold-core eddies, U.S. Dept. of the Interior, Minerals Management
Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2007-056.
107 pp.

3 — Spatial Arrays of Current Meter Data:

Donohue, K., P. Hamilton, K. Leaman, R. Leben, M. Prater, D.R.Watts, and E. Waddell. 2006.
Exploratory study of deepwater currents in the Gulf of Mexico. Volume II: Technical
report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS
Region, New Orleans, LA. OCS Study MMS 2006-074. 430 pp.

Donohue, K., P. Hamilton, R. Leben, R.Watts, and E. Waddell. 2008. Survey of deepwater
currents in the northwestern Gulf of Mexico. Volume II: Technical report. U.S. Dept. of

the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans,
LA. OCS Study MMS 2008-031. 375 pp.

Hamilton, P., J.J. Singer, E. Waddell, and K. Donohue. 2003. Deepwater Observations in the
Northern Gulf of Mexico from In-Situ Current Meters and PIES. Final Report. Volume
II: Technical Report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of
Mexico OCS Region, New Orleans, LA. OCS Study MMS 2003-049. 95 pp.

McKone, K., N. D. Walker, and E. Weeks. 2007. Full-water column currents near the Sigsbee

Escarpment (91-92°W. Longitude) and relationships with the Loop Current and
associated warm and cold-core eddies, U.S. Dept. of the Interior, Minerals Management
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Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS 2007-056.
107 pp.

Sheinbaum J., A. Badan, J. Ochoa, J. Candela, D. Rivas, and J.I. Gonzalez. 2007. Full water
column current observations in the central Gulf of Mexico. U.S. Dept. of the Interior,
Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS
Study MMS 2007-022. xiv + 58 pp.

4 — Platform Data:
NDBC Web Site: http://www.ndbc.noaa.gov/maps/ADCP_WestGulf.shtml

5 — Lagrangain Trajectories:

Donohue, K., P. Hamilton, K. Leaman, R. Leben, M. Prater, D.R.Watts, and E. Waddell. 2006.
Exploratory study of deepwater currents in the Gulf of Mexico. Volume II: Technical
report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS
Region, New Orleans, LA. OCS Study MMS 2006-074. 430 pp.

6 — Historical Data Analyses:

Nowlin, W. D., Jr., A. E. Jochens, S. F. DiMarco, R. O. Reid, and M. K. Howard. 2001.
Deepwater Physical Oceanography Reanalysis and Synthesis of Historical Data:
Synthesis Report. OCS Study MMS 2001-064, U.S. Dept. of the Interior, Minerals
Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 528 pp.

Further relevant reports can be found at:
http://www.gomr.mms.gov/homepg/regulate/environ/techsumm/rec_pubs.html

In particular, for eddy statistics, see Bob Leben’s altimetric SSHA movie, Peter Hamilton’s
current meter and PIES data, Nan Walker’s GOES imagery, and Bob Leben’s altimeter data.
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Air Deployable Expendable Current Profiler

Air Deployable Expendable Temperature and Salinity Profiler

Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, BC
Coastal Ocean Monitoring and Prediction System

Mexican National Council for Science and Technology

PIES with a current meter

Temperature and Salinity Profiler

University of Colorado

Electromagnetic—Autonomous Profiling Explorer, an air-deployable, expendable
velocity profiler

Gulf of Mexico Coastal Ocean Observing System Regional Association
Global Ocean Observing System

Gulf of Mexico

high frequency

Hybrid Community Ocean Model
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NSF
NWS
OAR
00l
PALACE
PEMEX
PIES
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PU
RAFOS
RSMAS
SAIC
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SSH

SST
TABS
TAMU
TRW
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USF
WHOI

National Environmental Satellite Data and Information Service/NOAA
National Oceanic and Atmospheric Administration

National Oceanographic Data Center/NESDIS

Naval Research Laboratory

Naval Research Laboratory Ocean Nowcast/Forecast System
National Science Foundation

National Weather Service/NOAA

Office of Oceanic and Atmospheric Research/NOAA

Ocean Observing Initiative/NSF

Profiling Autonomous Lagrangian Circulation Explorer float
Petroleos Mexicanos (Mexico’s state-owned petroleum company)
IES with bottom pressure sensor

Princeton Ocean Model

Princeton University

SOFAR spelt backwards; acoustically tracked subsurface floats

Rosenstiel School of Marine and Atmospheric Science, University of Miami

Science Applications International Company

Southeast Coastal Ocean Observing Regional Association
Sea surface height

Sea surface temperature

Texas Autonomous Buoy System

Texas A&M University

Topographic Rossby Wave

University of Rhode Island

University of South Florida

Woods Hole Oceanographic Institution
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The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility
for most of our nationally owned public lands and natural resources. This includes fostering
sound use of our land and water resources; protecting our fish, wildlife, and biological diversity;
preserving the environmental and cultural values of our national parks and historical places;
and providing for the enjoyment of life through outdoor recreation. The Department assesses
our energy and mineral resources and works to ensure that their development is in the best
interests of all our people by encouraging stewardship and citizen participation in their care.
The Department also has a major responsibility for American Indian reservation communities
and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS)
primary responsibilities are to manage the mineral resources located on the Nation's Outer
Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian
lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program
administers the OCS competitive leasing program and oversees the safe and environmentally
sound exploration and production of our Nation's offshore natural gas, oil and other mineral
resources. The MMS Minerals Revenue Management meets its responsibilities by ensuring the
efficient, timely and accurate collection and disbursement of revenue from mineral leasing and
production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being
responsive to the public's concerns and interests by maintaining a dialogue with all potentially
affected parties and (2) carrying out its programs with an emphasis on working to enhance the
quality of life for all Americans by lending MMS assistance and expertise to economic
development and environmental protection.
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