
University of Alabama in Huntsville/Minerals Management ServiceUniversity of Alabama in Huntsville/Minerals Management Service
Cooperative StudyCooperative Study

Satellite Data Assimilation into Meteorological / Satellite Data Assimilation into Meteorological / 
Air Quality ModelsAir Quality Models

Arastoo Pour BiazarArastoo Pour Biazar
Richard McNiderRichard McNider

Kevin DotyKevin Doty
Scott M. MackaroScott M. Mackaro

Kate La CasseKate La Casse
Stephanie HainesStephanie Haines

University of Alabama in HuntsvilleUniversity of Alabama in Huntsville

William LapentaWilliam Lapenta
Gary JedlovecGary Jedlovec

Ron SuggsRon Suggs
NASA Marshall Space Flight CenterNASA Marshall Space Flight Center

Robert CameronRobert Cameron
Minerals Management ServiceMinerals Management Service



The Sea Breeze Is Critically Important in Air Quality in Coastal Areas

For example, in Houston high concentrations are associated 
with wind reversals related to the land/sea breeze system.

Strength of Sea Breeze 
Circulation Depends on 
Heating of the Land, and 
temperature of water
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The rate at which the land surface heats up in the 
morning and cools down in the evening is related to 
surface characteristics such as heat capacity, surface 
moisture and incoming solar radiation.

However, these parameters are ill-defined and not 
directly observable on fine scales from standard 
networks. 

MM5 Landuse Heat Capacity MM5 Landuse Moisture Availability



Specification of land-water boundaries can be difficult 
in complex coastlines and at marshy boundaries.

MM5 Skin Temperatures Satellite Skin Temperatures

Use satellite data to naturally determine heat capacity and 
moisture fraction of grids. 



Model Satellite

Difference

Clouds at Wrong Place, Wrong Time, and Too Opaque



NWS Stations Marked on 8km Grid 
(Exhibiting Observation Gaps)

NWS stations are too sparse for model spatial resolution 
and not representative of the grid averaged quantity.



Models do not maintain as much energy 
at higher frequencies as observations 
indicate.  This can severely hinder short 
term forecasting efforts.

Satellite data can be utilized to fill the 
diurnal energy gap and to improve the 
model performance with respect to short 
term forecasts. 

Synoptic Diurnal Synoptic Diurnal

OBSERVATION MODEL

AVHRR GOES-8 Skin Temperature
19 May 1999  3:00 PM CDT

Appealing attributes of GOES data:
High sampling frequency

High spatial resolution

Pixels provide an integral quantity



TARGETS FOR ASSIMILATION

1. Surface energy budget

• Insolation

• Albedo

• Moisture availability

• Bulk heat capacity

2. Vertical motion and clouds

3. Photolysis rates



Typical Schemes Used to Infer 
Moisture Availability
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Taken from Carlson (1986) to demonstrate the sensitivity of the surface 
energy budget model.  Each panel represents the sensitivity of the 
simulated LST to uncertainty in a given parameter.

Sensitivity of Surface Energy Budget
to Various Parameters

Moisture 
Availability

Thermal 
Inertia



* Assimilation Performed Between 1300–1400 UTC
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Grid scale heat capacity very difficult to define
Grid box made up of soil, trees, buildings, grass, water etc.

Model heat capacity not well defined fundamentally.



* Assimilation Performed in Early Evening
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Model
NO assimilation

Model
WITH assimilation

Satellite
Observation

Satellite assimilation technique for surface properties has shown that the 
surface/air temperature predictions can greatly be improved.

2-M Temperature Bias
(12-km Domain over Texas)
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Comparing model 2-M temperature 
predictions to the observed temperatures 
from National Weather Service stations 
shows that the satellite assimilation 
technique (blue line) reduces the forecast 
bias in the model (warm bias at night and 
cold bias during the day).

Control 
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Only moisture 
adjustment



Scatter Plot
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Scatter plot from a simulation (12-km) in which moisture 
availability was only adjusted periodically.



Land Surface Temperatures

GOES LST (C) valid 1945 UTC CTRL LST (C) valid 20 UTC



Land Surface Temperatures

GOES LST (C) valid 1945 UTC ASSIM LST (C) valid 20 UTC



Temperature Time Series @ VPS

16

18

20

22

24

26

28

30

32

0 2 4 6 8 10 12

Forecast Hour

Te
m

pe
ra

tu
re

 (C
)

OBS 

CTRL

ASSIM

OSU

________
________
________
________



H vs. Delta T
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E vs. Delta T
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Model over-predicts 
surface fluxes as a 
function of temperature 
gradient.



SUN

BL OZONE CHEMISTRY

O3 + NO -----> NO2 + O2

NO2 + hν (λ<420 nm) -----> O3 + NO
VOC + NOx + hν -----> O3 + Nitrates

(HNO3, PAN, RONO2)

αg

αc

hν

αg

)(. cldcldcld absalb1tr +−=

Cloud albedo, surface albedo, 
and insolation are retrieved 
based on Gautier et al. (1980), 
Diak and Gautier (1983).

Surface

Inaccurate cloud 
predictions result in 
significant under-
/over-prediction of 
ozone.  Use of satellite 
cloud information 
greatly improves 
model predictions.



Satellite Method MM5 MethodPhotolysis Rates

Cloud Base

transmittance

Cloud top

Transmittance = 

1- reflectance - absorption

Observed by satellite
F(reflectance)

Cloud top

Determined from satellite IR 
temperature

Determined from 
model LW = f(RH)

Transmittance
Determined from 
LW= f(RH) and 

assumed droplet 
size

Cloud Base

Determined from 
LCL

Determined from 
model LW = f(RH)



Largest changes in O3 concentration due to use of observed clouds for the 
entire period of study covering 24 August to 1 September 2000.

(O3b-O3a, b=Sat. Observed Cloud, a=Control)
NO, NO2, O3 & JNO2 Differences (Satellite-Control)

(Point A: x=38:39, y=30:31, lon=-95.3, lat=29.7)
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OZONE (Control, Sat_Cld, & Observed)
(Point E: x=74, y=40, lon=-90.77, lat=30.36)

New Orleans
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Observed O3 vs Model Predictions
(South MISS., lon=-89.57, lat=30.23)
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ASSIMILATION OF GOESASSIMILATION OF GOES--DERIVED DERIVED 
CLOUD PRODUCTS IN MM5CLOUD PRODUCTS IN MM5



Initial Basic ApproachInitial Basic Approach
• Use GOES cloud top temperatures and/or cloud 

albedoes to determine a maximum vertical velocity 
(Wmax) in the cloud column.

• Adjust divergence to comply with Wmax in a way 
similar to O’Brien (1970).

• Calculate new horizontal divergent wind components.

• Nudge MM5 winds toward new horizontal wind field.

• Determine a way to remove erroneous model clouds.



Satellite ProductsSatellite Products
• Cloud albedo
• Cloud top pressure / brightness temperature
• Short wave radiation
• Surface albedo
• Skin temperature



Simulation HistorySimulation History
• Texas 2000 AQS, 36-km grid, Grell scheme

• SOS 1999, 8-km grid, Kain-Fritsch scheme



Multiple Linear Regression VariablesMultiple Linear Regression Variables

• Magnitude of Maximum 
Diabatic Heating

• Layer with Upward 
Motion

• Total Cloud Depth 
• Number of Cloud Layers
• Depth Wmax Layer
• Wmax
• Height of Wmax
• Est. 1-h stable precip.
• Est. 1-h convective 

precip.
• Height of Max. Diabatic

Heating



Steps in Regression AnalysisSteps in Regression Analysis
(1) Develop the needed regression 

equations using strictly MM5 control 
runs.

(2) Apply the regression equations in MM5 
assimilation run utilizing satellite data as 
much as possible. We also define the 
cloud geometry by performing cluster 
analysis.
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BIAS = (Total model predicted cloud) / (Total observed cloud)



A

B C

Downward shortwave radiation in W m-2

at 2200 UTC 6 July 1999.

(A)  Derived from GOES–8 satellite.  
(B)  Control run with no assimilation. 
(C)  Run with assimilation of satellite 
cloud information.

MODEL
WITH assimilation

MODEL
NO assimilation

GOES
OBSERVED

Insolation

Satellite Data Is Utilized to Correct 
Model Cloud Fields in a Dynamically 

Consistent Manner



Control Run Assimilation
Satellite 
Observation

Surface incident shortwave radiation in W m-2 for 2 July 1999. Assimilation 
and satellite observation plots are @ 14:45 UTC, and the control run is @ 
15:00 UTC. 

Control: Control run with no assimilation. 

Assimilation: Run with assimilation of satellite cloud information. 

Satellite Observation: Derived from GOES–8 satellite. 



Concluding RemarksConcluding Remarks
• The cause of dry bias in the assimilation 

technique is still unknown.

• Transition into WRF modeling system is under 
way.

• Preliminary results from MM5 cloud assimilation 
work are promising, but still need improvement.

• We would like to thank MMS for supporting this 
research.
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