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Abstract. A linear diagnostic model was constructed to simulate the
Bering Sea circulation. Monthly mean wind stresses along with lateral
water mass exchanges were used as model-forcing functions. The numeri-
cal solutions obtained for the case of annual mean wind stress generally
agreed with an existing view about the cyclonic circulation of the sea
water. The solutions obtained for each twelve-month period, however,
revealed significant seasonal differences in both magnitudes and flow
patterns. Additional controlled experiments indicated that the winter
circulation regime was strongly influenced by wind stresses as well as
lateral water mass exchanges, whereas the summer circulation regime was
basically controlled by the latter. The model results also showed that

the circulation is strongly bathymetry-dependent,

1. INTRODUCTION

There is currently a significant focus of scientific interest on
the Bering Sea. This area has always been of particular concern to
investigators supporting fisheries research in both the United States
and Japan. More recently a large scale environmental assessment program
sponsored by the Outer Continental Shelf office of the Bureau of Land
Management has concentrated attention on potential oil development areas
in Bristol Bay. This study contains a number of components covering many
scientific disciplines which require supportive circulation information.
Within the immediate future, planned expansion of the OCS study will
extend the investigations to the north, including most of the eastern
continental shelf area as fTar as Norton Sound and through the Bering

Strait. In addition 10 these studies, a second large scale study, PROBES
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(Productivity and Resources of theBering shelf), is being planned, which
will concentrate on the trophic level exchange in the incredibly rich
fisheries located along the shelf break; this ecologically based study
will also require circulation information.

Due largely to technical difficulties in oceanographic observations,
our present knowledge of the Bering Sea circulation is fragmentary. The
presently available observational data reveals only uncertain knowledge
of the surface current velocities and very little about the deep basin
circulation. Recently Arsen’ev (1967), Hughes et al« (1972) and
Takenouti et_al. (1972) compiled rather extensive field data, and pro-
posed a number of alternative current schemes. Although they all shared
an existing view about the cyclonic circulation of the sea waters, they
disagreed in all the other respects: the number, location, size and even
the direction of rotation of gyres depicted.

In the present study we attempted to explore fundamental physical
processes of the sea using an oceanic general circulation model. A
number of oceanic general circulation models have already been developed
and have successfully simulated many of the observed large-scale features
of the ocean currents. We have begun our study by adopting one such
model (Semtner, 1974) in a simplified form.

Gurikova et al., (1 964) carried out a numerical study of the Bering
Sea circulation using a linear diagnostic model. They assumed a flat-
bottomed, lateraily closed basin, and thus investigated only a wide-driven
circulation. The model results, however, confirmed the presence of a

cyclonic circulation of the sea waters.
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Lately Bacon (1973) applied the barotropic model of Galt (1973) to
the Bering Sea, and examined a typical. seasonal response of the western
deep basin circulation. He was also able to identify, by making a series
of controlled experiments, some of the important effects such as wind
stress, lateral boundary forcing, and bathymetry.

The Bering Sea studies above are essentially two-dimensional and do
not take into account the thermohaline component of the circulation. It
would seem that any serious attempt to simulate a realistic circulation
must eventually include the thermohaline effect. Accordingly, our main
effort has been to model the Bering sea in a three-dimensional way. This
study is still in progress and will soon be published in part Il of this
series of technical reports. Meanwhilewe have constructed and tested a
two-dimensional diagnostic model as an initial step toward the three-
dimensional modeling efforts. We have applied this simple model to the
Bering Sea; this report reviews the model and its results. Section 2
contains a brief discussion of the mathematical model and the numerical
procedure, together with the model boundary conditions. The results and

their implications are discussed iIn sections 3 and 4.
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2. THE MATHEMATICAL MODEL AND BOUNDARY CONDITIONS

2.1 The Model

The equations of motion for horizontal non-accelerated flow with a constant

vertical eddy coefficient are: 2
1 3 dn
-y, = - m _JP * PoX a3y @
129 82
fup = - L 2P 2y
f Po® "2 3¢ t P 722 @

The hydrostatic equation and the mass continuity equations are:
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In these equations spherical coordinates are used, withx, ¢, and z
representing longitude, latitude, and height. The fluid is contained
between the surface z = 0 and the bottom z = -H{X,¢). The model specifies
two horizontal velocities and pressure. The model assumes the fluid
is homogeneous; thus the density Poisaconstaq;(ﬁl)-

The boundary conditions are:
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In equations (5) and (6)n is the free surface elevation;H is
the depth of the sea; and T;,Tg are the bottom stress components. Assum-
ing that n/H << 1, we impose the boundary condition (5) at z = 0.

Then the momentum equations (1) and (2) are vertically averaged to yield:

fr =09 3,1 ,2 _ p=
fv =3 cose aA+H("o Ru), @)
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In equations (7) and (8) the component bottom stresses are taken as Ru
and Rv where R is the coefficient of friction (R - 0.02 m/s). Integration

of the continuity equation (4) with boundary conditions (5) and (6) yields:

L 3 (° 1102 (eosq
a COS¢ SA ( j UdZ) + a -Acos¢,'f a¢(cosj 0 ¢ dz) = 0 (]])
-H =H

Equation (11) simply states that the vertically integrated flow is

horizontally nondivergent, which guarantees the existence of a transport

stream function ¥ such that
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Substituting equations (12) and (13) into (7) and (8), and applying

the CUY‘; operator, defined by
1 9pa _ 3 __
cur) (ays 9p) = sz [ 352 - 55(ay cosé)] (14)

and simplifying by eliminating a factor of 1/(a2cos), we get:
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Equation (15) is an inhomogeneous, linear, elliptic, second-order partial
differential equation for the stream function ¢ . For a given bathymetry

H (A, ¢) and a prescribed surface stress distribution‘f3(1,¢) and

T:(1,¢), the stream function ¥ can reobtained by inverting the second
order differential operator. It is necessary to specify boundary con-
ditions for this inversion. If the domain is singly connected, an arbi-
trary value can be specified as the value of the stream function on the
boundary in general. However, the domain of ¢y will be a multiple connected

region whose boundary consists of a primary continent and several islands.
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On the chosen continent, ¥ can be held constant, but on the islands ]
must be obtained as a part of the total solution. In order wobtain
the Vvon the islands, we use the method of “hole relaxation” by Takano
(1974). Since the surface elevation n is a single valued function, a
line integral of vn around the coast line of each island should vanish.
By applying this condition iIn integrating equations (7) and (8) around
each island, the following equation is obtained to predict the¥ on the

island:

1, A R 2y gglep R 3 -
Sé}{( o * A 2 ) acos ¢ dy+ ﬁ-(ro - T a cos 5%0 ad¢ = 0 (16)

In the above, the fact that y is spatially constant along the coastline
eliminates any contribution from the Coriolis terms.

We solve equations (15) and (16) simultaneously by the *“successive
over-relaxation method.” It should be mentioned, however, that the highest
order terms iIn equation (15) invovea small friction parameter R, and
thus special care must be taken to maintain stability of the numerical

methods. This plus the numerical procedure for solving Equation (15)

and (16) will be discussed iIn section 2.3.
2.2 Surface Wind Stress and Open Boundary Conditions

Wind stress can be estimated by conventional drag law methods if
the surface wind is known. Unfortunately, wind measurements over the
Bering Sea are very sparse iIn space and time,since they generally come

from a handful of ship stations. Therefore, for the numerical models,
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wind stress is computed from surface pressure data. First, monthly mean
pressure data provided by the National Climate Center were interpolated
quadratically from a 5° x 5° grid mesh onto the model grid mesh of 2°

(long. ) x lol(lat.). The interpolated pressure data were then used to
estimate the geostrophic wind velocity, and the wind velocity at anemometer
height was obtained by multiplying the geostrophic wind speed by a factor v
and changing the geostrophic wind direction by angle a (the constant v

is .07: a is 190). Strictly speaking, one should use synoptic maps in
estimating wind stress because the variable part of the pressure. could
increase the wind stress estimate through the non-linearity of the drag

law. In fact, the studies by Aagaard (1970) and Fissel et al. (1977)
strongly suggest that the stress computed from the monthly mean pressure
could be easily underestimated by a factor of 2 or 3. On the basis of
this study, we multiplied the monthly mean stress by 3.0 for the model
calculation.

The annual mean wind stress was computed by averaging 12 months of
wind stress data. This is shown in Figurei1 The computed monthly mean
wind stress patterns for January through December are shown in Figures
2-13. The January map shows a typical winter pattern characterized by
the northeasterly stress associated with a strong high pressure center
over Siberia and low pressure center over the North Pacific Ocean. The
stress pattern in August, on the other hand, shows a very weak stress
over most of the sea and somewhat stronger ‘“southwesterly stress over

the southeast part of the basin. In general, the wind forcing in summer
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is weaker by one order of magnitude than in winter. This significantly
large winter-to-summer change in the wind stress might lead to large
annual signals in the resulting currents. Recent work by Kinder, et al.
(1975) has suggested that variations in the wind stress may result in
planetary wave patterns that control the current structure along the Bering
Sea shelf break. Although the present model does not include any such
wave dynamics in its steady state formulations, the time-dependent problem
is of considerable theoretical interest. For this reason the complete
annual cycle by months has been included. To the authors’ knowledge the
analysis of these monthly mean pressure data to yield sequential stress
patterns is not available elsewhere; We hope that this effort will help
stimulate productive consideration of the more complete time-dependent
problem. In addition to stress fields, the model requires boundary con-
ditions.

At the open boundaries of the grid, estimates of vertically in-
tegrated transports were required. The model has four open boundaries
along the Aleutian - Commander Island Arc: Kamchatka Strait, Commander -
Near Strait, Central Aleutian Pass and Western Aleutian Pass. The Bering
Strait also modelled as an open boundary. The widths and depths of the
open boundaries are adjusted to match the observed bathymetry within the
limits imposed by grid resolutions. |Integrated volume transport values
on the open sections are chosen from various estimates presently available.
It should be mentioned, however, that at the present stage there are many

uncertainties in transport estimates at the various passes.
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The chosen values of (annual mean) transports are given in Table 1.
A net transport of 18 sv (1 sv = 106m3/s.) outward through the Kamchatka
Strait is in close agreement with an estimate of 18.4 sv by Arsen’ev
(1967) and summer values {20sv) by Hughes et al. (1974). A net transport
of 14sv inward across the Commander - Near Strait, taken from Arsen’ev
(1967), is greater than an estimate (10SV) by Favorite .(1974) but less
than Hughes et _al. (25sv). The total inflows through the Western and
Central Aleutian are based on the estimates made by Arsen’ev (1967). FOr
the Bering Strait, the total transport (1sv) outward was chosen from the

estimate (1.1sv) by Arsen’ev (1967).
2.3 Numerical Procedures

The basic equations (15) and (16) for the volune Flux stream function
¥ are solved numerically by finite-difference methods. The Bering Sea
domain is approximated by a collection of rectangles, each having horizontal
dimensions corresponding to increments AX and 4¢in longitude and latitude.
The boundary grid is chosen so as to best approximate the coastline (Fig. 14).

We write the basic equation (15) in a compact form using Cartesian

coordinates:

R v2y +A§—%+Bg—‘pj=¢. 1n

where A, B and ¢ are functions of bottom slope, planetary vorticity gradient
and the wind stress distribution.

Let the nodes (Fig. 15) be labeled x =i, x + d=1+ 1, x - d =
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i-l,y=j,y+d=3+1,y-d= j-1. Then atthenodes(i,j).,

Equation (17) has the finite difference form:

LI ty + oy + ¥ - 4y +A - :
R[dz(iﬂ,a TR I T R B B i,j)]m(wm,j‘?-m.)

B
+ 5 . . - . . =

Solving foruji j leads to

R _ (R, A R, B R _A

Ya2vi,y 7 @2V in, g M@t 2@ Y a2 28 Vg
R - B

+ ('8"2 E’)‘Di,j_] _‘bi J (]9)

Thusy s defined at each grid point in terms of ¥ at four neighboring
grid points, each weighted by a factor related to the grid size, depth,
bottom slope and wind stress.

Approximating the differential equation (17) by the finite dif-
ference equation (19), wWe obtain a system of linear algebraic equations.
One efficient method of solving this type of equation is that of “suc-
cessive over-relaxation.” For solution convergence, however, the matrix
of equation (19) must be diagonally dominant, i.e., the sum of the off
diagonal elements in any row of the coefficient matrix must be less than

or equal to the diagonal element in that row. The condition to be met

here is:

+

R, A R B R A R B R
!afidl * I*EZ*E TZ'E|+,F'?’J <4732 (20)

This condition will be met if:
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,A‘ < %3 , (21)
iy =

Thus, three factors are critical in obtaining a converging solution:
bottom siope, friction coefficient and grid size. Clearly conditions
(21) and (22) can always be satisfied by making d Small enough. I n
practice, however, the number of iterations and the storage requirements
increase as d decreases.

Sarkisian (1976) recognized this difficulty and proposed an alter-
native; the “method of directional differences.” We used this method
for the present study. The essence of the method is quite simple:
Depending on the sign of the coefficients, forward or backward finite
differences are used for the first-order derivatives in such a way that
diagonal terms possess the maximum weights. For instance, in Equation
(17), following Sarkisian's notation, we substitute the derivative with

respect tox by the directional difference relation in the following way:

d(‘g';() S1¥541 3 + (1-2 8;) 1!’1,3' + (51"])'P.i_],j (23)

|
o

where §; = for A j < 0
b

Similarly,

3 = .
d5) T02¥ 1,341+ (1= 26k 5+ (8- Dy 54 (24)



0 for B, j< 0

where ¢,

8§, =1 for B+ 0

j>

IT we write the finite-difference analogue of the sum A%$-+ B%% » then y, ;
’

inthissym, Thus the dia-
gonal predominance is present in the system of algebraic equations

has the coefficient “A. .‘ '+|B. .‘1
1,) 1,J

obtained, independent of the signs of the coefficients Aand B. The Laplace
operator is written as in equation (18). Then we obtain the following
difference approximation of equation (17):

R - I
@1 T ey g T hgn Wy

+ A1. ; $1¥ 549 o 0 - 251)1‘”?3' + (& '])“”i-l,j
’ d

+ B '52‘1’ P,d+1 <t 285 ) 'I'V'i,j * (s - 1) lbi,s,j:]

1.3 - = %i,3 (25)

The computation of the stream function on islands remains to be
discussed. Rather than construct a finite difference version of equation
(16) directly, we use an indirect approach which is based on a finite-dif-
ference form of Stokes theorem (see Semtner (1974)). This theorem applies
to any area A covered by a collection of rectangles and having a peri-

meter P of rectangle edges. |If arbitrary values of two fields 9 and 9,
are defined at the corners of rectangles, the following can be shown

to hold:
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To compute the value of the island stream function, a line integral
of equations (7) and (8) is regired. The curl of those equations is al-
ready available in equation (25). By virtue of the Stokes theorem above,
we can equivalently take the area sum of equation (25). (We can arbitrarily
set the values of stress to be zero at the interior corners of rectangles,
then the area sum will pPICK up non-zero at the interior corners of rectangles
on the margin of the area.) The resulting area sum gives an algebraic
relation between the value of ¢ for an island and all the values of ¥ immediately
surrounding the island. This relation is solved simultaneously with

equation (25) at each grid point in the Bering Sea domain.
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3. RESULTS

Solutions were obtained first for the case of annual mean wind stress
(Fig. 1) and mean mass Flux conditions (Table 1) specified at the open
passes. Solutions for each twelve-month period were also obtained, but
due to the lack of data, monthly variations of the lateral boundary mass
fluxes were not taken into account; an annual mean flux condition was used
in the calculations. Additional model parameters are given in Appendix B.

With the annual mean wind stress from the general direction of north-
east, contours of the stream function for the whole Bering Sea (Fig. 16)
show a strong cyclonic gyre in the western half of the basin, and a some-
what complicated but much weaker flow (less than 2 sv.) in the eastern
shelf region. More specifically, the Pacific Ocean waters entering through
the open passes along the Aleutian Islands chain first move eastward along
the Aleutians, and then turn northwestward along the shelf break to form
a broad cross basin flow. A little south of Cape Navarin this cross basin
current branches into two parts: the main part flows southwest, the second
part flows toward the Bering Strait. The southwest-bound current moving
parallel to Koryak Coast and Shirshov Ridge finally flows through the
Kamchatka Strait into the Pacific Ocean.

The mass transport vectors computed from Equation (12) and Equation
(13) for the annual mean case are shown in Figure 17. To show a clearer
picture of the circulation pattern in the deep basin, that portion was
magnified and is shown in Figure 18. The flow pattern, of course, is

consistent with the stream function field described above. It must be
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remembered, however, that the transport velocity vectors do not characterize
the motion of the water particles but give only a picture of the overall
water transport in the whole vertical column of the layer. In other words,
the actual current pattern at a certain level could be substantially dif-
ferent from the transport pattern. Nonetheless, the results obtained

are of definite importance for establishing the nature of the mean circu-
lation of the sea.

To illustrate the monthly average characteristics of the total current,
transport stream functions for January through December were calculated.
Judging from these maps, the average, longterm current in the deep basin
is basically cyclonic, which agrees with the annual mean case. There are,
however, significant differences in both magnitudes and flow patterns be-
tween the winter regime and the summer regime.

In the winter season, the flow in the deep basin is characterized by
three strong cyclonic subgyres. These subgyres are established in November
and retained through the winter months (November-March) reaching a maximum
strength in February (Fig. 19). The strong cross-basin transport along
the shelf break is another characteristic of the winter regime. It extends
from the southeast corner of the basin to the south of Cape Navarin. The
flow in the shelf region appearsto be quite complicated; it even shows
an anticyclonic gyre in the Gulf of Anadyr. Unfortunately, due to a wide
coverage of pack ice over the shelf in winter, there are no field data
available to verify the model results. Ye might conjecture at most that
the flow under the ice sheet probably resembles the model result, but this

is not certain.

714



The transition to summer is characterized by weakening of both the
subgyres in the deep basin and the cross-basin transport along the shelf
break. The subgyres completely disappear in May and reappear in October.
The pattern for August is seen in Figure 20. The deep basin circulation
becomes weaker and tends to confine itself in the vinicity of the source-
sink region as the season progresses. The seasonal differences of the
flow regime in the present study must be attributed to seasonal variation
of the wind stress since the model assumed a fixed mass Flux boundary con-
dition. This was further investigated in a series of controlled experi-
ments; one with wind forcing only (fig. 21), and the other with a source-
sink only (Fig. 22). Evidently, the summer circulation closely resembles
the one with the source-sink only. This might indicate that the circu-
lation in summer, is primarily driven by the mass source-sink specified
along the boundary mainly due to the absence of strong wind. On the other
hand, the closed gyres of the deep basin in winter are direct consequences
of wind forcing, which showed up clearly in the experiment with wind forc-

ing only,
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4. SUMMARY AND SUGGESTIONS

The present diagnostic study attempts to establish a basis for a
three-dimensional prognostic modeling of the Bering Sea. The model
performances are very encouraging; a simple model such as this can be
valuable for exploring some fundamental physical processes in the Bering
Sea. The results obtained generally agree with the existing flow features
as inferred from the climatological hydrographic data. Seasonal char-
acteristics of the model flow, however, are yet to be verified with the
observational data.

Furthermore, the present study provides us with invaluable information
on the range of model parameters such as bottom topography, wind stress,
etc. This information has already been used in our initial calibration
of a three-dimensional model.

Based on the analysis of the present study, we propose a few sug-
gestions:

1) A numerical model with a finer grid resolution is needed to
handle the narrow passage along the Aleutian chain and to adequately resolve
the bottom topography of the sea. There 1s a strong indication thatthe
model flow depends upon the prescribed boundary mass flux conditions and
upon the details of bottom topography. Doubling the present grid resolu-
tion (100 X 100 km) should improve the results significantly.

2) A more accurate estimate of wind stress over the Bering Sea is
certainly necessary. The present study indicates a sensitivity of flow

features to both the intensity and the pattern of driving stress. For
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example, seasonal characteristics of the model flow are entirely due to
seasonal variation of the imposed wind stresses. Reliable synoptic pres-
sure maps are required in order to eliminate the use of stress mulipliers
with mean pressure maps. (This has been under investigation and will be
reported elsewhere.)

The effect of seasonal variation of boundary mass flux on the sea
circulation must be taken into account in future studies. The controlled
experiment shows that the summer flow regime is very similar to that with
the boundary mass forcing only, thus indicating the importance of boundary

conditions in determining the summer regime. Future field work directed

toward measuring lateral boundary conditions will improve simulation of
the interior flow.
3) Finally, the two-dimensionality of the present model --probably

the weakest point of the model--allows only vertically averaged mass cir-
culations. These results, however, are difficult to verify with field data
obtained at a fixed level because there is usually a rapid variation of
magnitude and direction of the flow with depth in the real sea.

In order to simulate more realistic circulation in the Bering Sea,

three-dimensional modeling based on complete equations is necessary.
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Table 1.

Mass transport at open boundaries

Kamchatka Strait - 18sv.*
Commander - Near Strait + 14sv.*
Western Aleutian Pass + 4SV.
Central Aleutian Pass + lsv.
Bering Strait - 1SV.

* _ Qutward

+ Inward
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FIGURE CAPTIONS
Figure 1. Annual mean wind stress (dyne/cm’) computed from 12 monthly
mean wind stresses

Figure 2. January mean wind stress computed from the monthly mean pressure
map

Figure 3. February mean wind stress computed from the monthly mean pressure
map

Figure 4. March mean wind stress computed from the monthly mean pressure
map

Figure 5. April mean wind stress computed from the monthly mean pressure
map

Figure 6. May mean wind stress computed from the monthly mean pressure map
Figure 7. June mean wind stress computed from the monthly mean pressure map
Figure 8. July mean wind stress computed from the monthly mean pressure map

Figure 9. August mean wind stress computed from the monthly mean pressure
map

Figure 10. September mean wind stress computed from the monthly mean pressure
map

Figure 11. October mean wind stress computed from the monthly mean pressure
map

Figure 12. November mean wind stress computed from the monthly mean pressure
map

Figure 13. December mean wind stress computed from the monthly mean pressure
map

Figure 14. Bering sea configuration and the finite difference approximation
of the Basin. Contours of depth are superimposed.

Figure 15. Location of variables in the horizontal grid

Figure 16. Annual mean mass transport stream functions. Contour intervals
are 2 sv ( ) and 0.2 sv (---)

Figure 17. Velocity vectors which correspond to Figure 16

Figure 18. Velocity vectors for the deep basin
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FIGURE CAPTIONS (cont.)

Figure 19. February mean mass transport stream function
Figure 20. Same as Figure 19 except for August

Figure 21. Annual mean stream functions computed with the annual mean
wind stress forcing only.

Figure 22. Annual mean stream functions computed with the prescribed
lateral mass source-sink only.
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APPENDIX G

Trajectory Model Listing

September 1978
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This appendix contains a listing
of the trajectory model used to generate
the trajectories presented in this report.
The code was designed by R.J. Stewart for
the NEGOA region and utilizes the environ-
mental library described in the main body
of the report.
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IR i

Ly

oo oDom oo s oo GO

ProGRAM MCTRAJC INPUT »OUTPUT » TAFES=INFUT » TAPES4=0UTFUT »

XTAFEL, TAPE2» TAPE3» TAFESs TAPE?» TAPE17 » TAFER3» TAFE2?)

KE CAREFUL TO RESERVE BUFFERS ONLY FOR THOSE FILESBEINGUSED.
SUBROUTINES

CNVWND S CALLED BY MCTRAJDECODES INTEGER REPRESENTATION OF
WIND VECTOR(M/S)

CNUCUR:CALLED BY MCTRAJ,DECODES INTEGER REPRESENTATION OF
CURRENT VECTOR(M/S)

FUNECTIONS
AVMAG : RETURNS TWELVE HOURLY AVERAGE MAGNITUDE
DEGPKMS RETURNS DEGREES LONGITUDE PER KILOMETER

AT LATITUDE SPECIFIED IN ‘ARGUMENT

INFUT DATA SETS

FATSEQ = SEQUENCE OF WIND PATTERNS? APPENDED TO END OF TAFE3
ANI) TAPE4.
WMIS&S4 = MID IS HOURLY DATA JUN-BEF 1974 (INTEGER CORED)
UHMI133 = TAFE3» MID s HOURLY DATA JAN-MAR 1975 (INTEGER CODED)
WE12S = EB33 HOURLY DATA JAN-FER 1975 (INTEGER CODED)
RUNFFG = TAPES» INPUT DATA FOR THE MAINFPROGRAM{CARDSsTERM) .
CURM&2 = TAPE®y STATION 62 CURRENT METER DATA FEB 197S5(INTEGER CODED)
CURM&60 = TAPE9» STATION &0 CURRENT METER DATA JUL 1974{INTEGER CODED)
WINDXY = TAPE17s WIND PATTERNS FOR NEGOAs 13 TYPES (INTEGER CODED)
CURRXY = TAPE23r CURRENT PATTERN FOR NEGOAfs 13 RAROTROFPIC,
2 BAROCLINIC (INTEGER CODEID)
MAP = TAPE2%y DIGITAL COASTLINE REPRESENTATION (0 IS WATER)

OUTPUT DATA SETS

NDATAN=TAFEZ2, SPILL TRAJECTORY POSITIONS FOR PLOT VIAPICTUR
QuUTS = TAPESYLISGTING OF PROGRAM

COMMON/WNDATA/WINDTM

REAL NCLATECLONG,SCLAT»WCLONG

INTEGER WINDITM»CURRTM

DIMENSTON MSTIND(3,14)

INTEGER STRTDA:STRTHR

INTEGER WINDXYsCURRXY

DIMENSION TWLTLG(Z,2)

DIMENSION TCLTLG(2:.2)

DIMENSION WINDTM(24,90) s CURRTM{24,90)
DIMENSION MAP(BO:240)

DIMENSION IWNDSEQ(2,90)

DIMENSION WINDXY({40520,13) s CURRXY (60,30 13)
DIMENSION X{?60)»Y(?60)r YLAT(P40)sXLONG(P40)
DIMENSION IEARDC(&0730)

DIMENSION UVCTRW(2+2y 13)sUVCTRC(2,2+13)
DIMENGION WMGSTN( 13)sCHGSTN(13)

DIMENSION UWSTN(13)

DIMENSION VUSTN(13)

DIMENS1ON UCSTN(13)

DIMENS1ON VESTN(13)

naTA WNDFAC/.03/
DATANCLAT/60.50/ECLONG/138.00/,ySCLAT/S8,00/,WCLONG/148 ,00/
DATA TULTLG/5%.43,144.33,58.50r,141 .00/
DATA TCLTLG/59.559142.279460.03y 145.85/

DATA X/260%9999./» Y/260%0.0/
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13

14

15

2000
[
e
o

21
22
23
2002

28

AT THE BEGINNING OF THE PROGRAM ANt THE NDATASTATEMENTS.

D010 I=1,90
READ(Ir1040) (WINDTMCJIrI) »J=1912)
READ(I»1040) (WINDTM(J, 1) »J=13+24)
READ(?71045) (CURRTM(J,I) 2 J=1,8)
READ(9r1045) (CURRTM(J» 1) » J=Pr14)
READ(?y1045) (CURRTH(J, 1)+ J=17y24)
CONTINUE

FORMAT(1216)
FORMAT(BI)

THELAST RECORDS IN THE WIND TIME SERIES CONTAIN THE
PATTERN SEQUENCE

READ(3s1090) {(IWNRSEQ(KsJ) yK=122)yJ=1,y30)
READ(3,1090) (CIUNDSEQ(KrJ) 1 K=1r2)50=31560)
READ(371090)( (IWNDSEI3(K,SJ) sK=152)rJ=41r90)
FORMAT(3012)

THE FOLLOWING ARRAY CONTAINS THE 13 WIND FIELDS

nn 15 R=1,13
Do 14 J=1,20
D0 13 LL=1r4
LLO=C(LL-10%10+1
LHI=LLO+?
REATI(172000) CHINDXY Ly JrK) 1 L=LLO,LHI)
CONTINUE
CONTINUE
CONTINUE
FORMAT(1014)

THE FOLLOWING ARRAY CONTAINS THE 13 BEAROTROPIC CURRENT FIELDS

no 23 K=1,13
nn 22 J=1,30
D0 21 LL=1ré
LLO=(LL~1)%10+1
LHI=LLO+? :
REAL(23,2002) (CURRXY(LrJrK) s L=LLO»LHI)
CONTINUE
CONTINUE
CONTINUE
FORMAT(1018)

THE ARRAY IBAROC CONTAINS THE BARGCLINIC COMPONENT OF THE CURRENT
FIELD. IT IS ASSUMED CONSTANT OVER THE SIMULATION PERIOD,

IREAD = O
10 29 J=1r30
DO 28 LL=1+6
LLO = (LL~1)%10+1
LHI = LLO+9
READ(2352002) (LBAROC (L »J) rL=LLALHD)
CONTINUE
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[

G

[XBEEN = HETINBEIRBY;S)
ITABGN = MSTINDC(IROW,3)
IHREGN = MBTIND(IROW:4)
IYREND = MSTINDC(IROW»S)
IMOEND = MSTIND(IROW,&)D
IDAEND = MSTIND(IROW:?7)
IHREND = MSTIND(IROW.8)
LASTDA = MSTIND(IROWs11)
NOWSTN = MSTINDC(IROW,12)
NOCSTN = MSTIND(IROW,13)
NEAROC = MSTIND(IROWs14)

CHECK IF START IS EARLIER THEN IlATA
IF(STRTDALTMSTINDCIROW,B))GOTO 490

NOWWRITE ALL PERTINENT DATA READ FROM TAPE 5 AT TOP OF NEW FAGE

ON TAFES.

WRITE(6TIO10)

WRITE(6J1017)MSTIND(IROW,1) »MSTIND(IROWr2)sMSTINDC(IROW,»3)»

1 MSTIND(IROWr4)

WRITE(Sr1018)IMSTIND(IROW,S) ' MSTINDC(IROW &) yMETINDC(IROW:7) »

P 2 MSTIND(IROW,8?

[

WR11E(15J1027) IDASEP s IHRSEP
WRITE(S71067STRTDASTRTHR
WRITE(S»?91IMSTIND(IROW,9) s MESTINDCIROUW,10)

991 FORMAT (1X»%EARLIEST START. POSSIBLEX,3Xr% STRTIA = X
1 I2s2XrXSTRTHR = ¥r12)
WRITE(4y 10468)LABTDA
WRITE(621037)SRCLAT » SRCLNG

WRITE(Sr1072INOWSTN TWLTLB (1 NOWSTN) » TWLTLG (2, NOWSTN)
WRITECS71073)NOCSTNy TCLTLG (1 NOCSTN) » TCLTLG (2, NOCSTN)

WRITE(Sr 1074 NBAROC

1010 FORMAT(1H1sX SIMULATION DATA CHOSEN IS: %/}
1015 FORMAT(A(IX,I2))
1017 FORMAT (X IYREGM = XyI2,2XyKIMORGN = Xy I2y2Xs»XIDARGN

* T2y2XyKIHRBGN = %,I2)
10168 FORMAT (K IYREND = %sI292XyXIMDEND = XrI2y32XrXIDAEND
* I2r 24X IHREND = %7I2)

1025 FORMAT(7X»2C(12¢1X))
1027 FORMAT(27X»% IDASER = X»12»
12X KIHRSEF = X,12)
1035 FORMAT(1X2E7.454XsFB.4)
1037 FORMAT (* SRCLAT = XsF7.4s2XsXSRCLNG = X,F8,4)
1067 FORMAT(SXy KFOR THIS RUNXs10X»X STRTDA = $,12, 2X,
1 XSTRTHR = %sI2)
1048 FORMAT(S5XyXLAST POSSIBLE DATEXs4XsXLASTDA = XsI2)
1070 FORMAT(2X»3CI2y2X))

1072 FORMAT(* WIND STATION NO =XrX2¢sX(MID |S = 17EB33 = 2) %,

R2Xr kAT LAT = XsF7.392Xs%XLONG = %,F7,3?

1073 FORMAT(* CURRENT STATION NO =XrI2s1XrX{(82=1r 60 = 2)X»

X2X s KAT LAT =XrF7.392XsXLONG =%k¢F7,3)
1074 FORMAT(* INDEX OF BAROCLINIC FIELD =%»I2,5Xs

¥k(1 = JULY 1974r2 = FEBRUARY 1975)%)

THE FOLLOWING ARRAYS CONTAIN THE CURRENT ANDWIND TIME SERIES.
VARIABLE TAPE NUMBER IDENTIFIES THE SQURCE PER THE COMMENTS
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UATA MSTIND/ 7427527590601 901+,07:01501,00,00+00y

1 784y 759 75902203003,04231,31,00,24,24,

2 26r33933+05222¢01¢8869»90+5%

3 01:01,02y02y01,01,01,02,02/
(:
c CONVENTION FOR INDEXING SPATIAL ARRAYS IS THAT THE
§ FIRST INDEX 1S EAST-WEST. ALL INDEXING ISRBASED ON AN
L ORI G N AT THE SW CORNER.
£ THE NE ANDSW CORNERS OF THE COMPUTATIONAL AREA ARE SPECIFIEDBY
W NCLATsECLONGsSCLAT»AND WCLONG,
C “THE OIL-WIND-CURRENT INTERACTION IS MODELED AS A SINMFLE
C VECTORIAL SUMs. THE WIND VELOCITY ISSCALEDBY
L WNDOFACy TYPICALLY +03.
¢
() DEGFKMIS & STATEMENT FUNCTION WITH ARGUMENT SLAT

DEGPKM(SLAT) = DGPKM/COS(SLATX.0174533)
NGFKM = 1,0/111.,12

i
™ BEGN TO END SPECIFIES PERIOD UNDERSTUDY,
" TIME SIMULATION PERIODS INCLUDE THE FOLLOWING
L
f: FERIOD STRTDA STRTHR LASTDA  NOWSTN NOCSTN  NEAROC
¢
13 (,/7174-9/4174 26 5 S6 1 2 1
[1/1/75--3/31/75 33 22 90 1 1 2
[
o 1/1/73-3/31/75 33 1 59 pel 1 1
Ny

IN GENERAL, ONLY A FRACTION OF THESE PERIODS HAVE SIMULTANEOUS
DENSITYFIELD» WIND, AND CURRENT MEASUREMENTS

OO

INFUT START DATA
SIMULATION FERIOD
READ(S»1025) IROW
C INASEF DETERMINES THE TIME SEPARATING TRAJECTORY RUNS
READ(S,1025) IDASEF » IHRSEP
I TIME TO START IS SPECIFIED WITH STRTDAsSTRTHR
REATI(S»1025)STRTDAY STRTHR
CURRENT DATA FOR TIME SERIES IS OBTAINED EITHER FROM
p STATION 62 OR STATION 60
STN 62= LAT S?.558 LONG 142.27Ws NOCSTN = 1
STN 40=LAT 460.03N LONG 145.85W; NOCSTN = 2
THIS DATA IS STORED IN TCLTLG,
THE Tive STEADY RAROCLINIC CURRENTS A rRE HASED ON
DENSITY DATAFROM
JULY 1974 NRAROC —1
FEER 19757 NRAROC =
SRCLAT AND SRCLNG SPECIFY THE SPILLSITE.
REAL(S5y1035)SRCLAT » SRCLNG
WINIDATA FOR TIME SERIES IS OBTAINED EITHER FROM
MIDDLETON ISLAND OR EER33,
MID IS =LATS9,43N LONG 146.33W5 NOWSTN = 1
" EB33 = LAT S8,50N LONG 141.00W3 NOWSTN = 2
THIS DATA ISSTORED IN TWLTLG
EQUATE VARIABLES TO MASIND

P

e,

ST

P
I

)
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CONTINU

IREAD = IREAD+1
IF{IREAD.EQ.1,ANDNBAROC.EQ.2)G0OTO 27
o 31 J=1:40

READ(29y2050) (MAP(I,J) rIn1,680)

31 CONTINUE
URITE (62 20560)
no 32 J=1:40
JI=4i-J
WRITECSr2055) (MAPCIyJJ) »I=1,80)
32 CONTINUE
2050 FORMAT(BOI1)
20%S FORMAT(1X»80I1)
2040 FORMAT(20Xs *MAP?*)

[

([ CALCULATE INDICES OF WIND AND CURRENT METER STATIONS
JWSTN = TFIXC(TWLTLG(1rNOWSTN)=SCLAT)I*20/ ¢ CLAT-Se rraty)tl
IUSTN = IFIX(CWCLONG-(TWLTLG(2,NOWSTN) ) 2¥40/ (WCLONG-ECLONG) ) +1
JCSTN = IFIX((TCLTLG(irNOCSTN)—SCLAT)*30/( LAT=SCLAT
ICSTN = IFIX(({WCLONG~(TCLTLGB(2,NOCSTN) ) ¥4 °/<UCL0NB-ECL0NG>)+1
WRITE(Ss2074)

2074 FORMAT(1HO»% INDICES OF WIND AND CURRENT METER STNS ARE: %//)
WRITECS»2075)IUSTNy JWSTNy ICSTN,JCSTN
2075 FORMAT (X IWSTN =%»I2,2X»XJUSTN =2X»I2:2XskICSTN =Xy
* 122Xy %JCSTHN =XeI12)

I‘ CALCULATE THE NOMINAL WIND AND CURRENT VELOCITIES FOR THE 13

t PATTERN TYPES AT THE WIND AND CURRENT METER STATIONS,

© ALSD DETERMINE THE WINDAND CURRENT MAGNITUDES ANIRI THE

f. REQUIREDR LONGITUDINAL AND TRANSVERSE UNIT VECTORS
WRITE(Ss2079)

CALL CNUCUR( IRAROGC(ICSTN, JCSTN) »UBCSTNy VBCSTN)
. WRITE(6r5050)URCSTNs VRCSTN
50%6 FORMAT(X UBCSTN = X,E12.4¢2Xy% VBCSTN = %,E12.,4)

110 S0 J=1¢13
CALL CNVUNDC(UWINDXY (IWSTNy JUSTN»JI)»UUSTNC(I) » VUBTNC(J))
CALL CNVCUR(CURRXY(ICSTN»JCSTNsJ)»UCSTN(JI»VCSTNCI))
WIND AND CURRENT VECTOR MAGNITUDE
WMGSTN{J) = SURT{ (UNSTNCI) XX2)+ (VWSTNCJ) %%2) )
CMGSTN(J) = SORT(C(UCSTN(JI*%X2)+(VCSTN(JI XX2))
WIND UNIT VECTOR ARRAY
UVCTRW(1,15J) = UWSTN(J)/WMGSTN()
UVCTRW(2,1+,J) = VUSTN(J)/WMGSTN(J)
UVCTRW(1,22Jd) = ~VWSTN(J)/WMGSTNC(D)
UVCTRUW(2y 2 J) = UWSTNC(JI) ZWHMGSTNC(Y)
CURRENT UNIT VECTOR ARRAY
UVETRC(1212J) = UCSTN(J) /CHMGSTNC(.D
UVCTRC(2¢1sJd) = VESTNCJI/ZCMBSTNC(D)
UVCTRC(1r2rJ) = —VCSTN(JI/CMGSTN(I)
UVCTRC(292¢0) = UCSTN(J)/CMGSTNC(D)

2079 FORMAT (1HO X WINDAND CURRENT PATTERN BATAAT STATIONS %*//)

WRITE(SHr2080)Jr WINDXY(IWSTNr JUSTHr ) »
¥ CURRXY(ICSTNrsJCSTN, D
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WRITE (A 2082YUUSTN(I) sVWSTNC(I) »
* UCSTN(J) yVESTN(D) |
* WHESTNCJ) yCMGSTNCD)
S0 CONTINUE
WRITE(6H22090)
0O 31 I=1y13
WRITE(Sy2092) ((UVCTRUWCLsKrI)1K=122)y

* (UVCTRCC1 Kr D) rK=1+2))
WRITEC(SH»2092) CCUVCTRW(2,Kr 1) s K=122)
% (UVCTRC(Z2yKr XD 1 K=1,2))

51 CONTINUE
CALL CNVCUR(IBAROC(ICSTNsJCSTN) sUBCSTNVBCSTN)
2000 FORMAT (XK J=XKyI2y5Xy KWINDXY=Xy 12X RCURRXY=Xr 18)
2082 FORMAT(X UWSTN=XsE12.4,2Xr ¥VWETN=XsE12.4s2XsX UCSTN=XsE12.4,
* 2XrRXVCSTN=XsE12, 422X X WMGSTN=%,E12.4,2XsXCMGETN=%yE12.4)

2090 FORMAT(20XOXWINDAND CURRENT UNIT VECTOR ARRAYX)
2092 FORMAT(1X:4(E12.,42X))

WRITE(2y2093)SCLAT »WCLONG» NCLATyECLONG
209Z FORMAT(4(IXrFP44))

G INITIALIZE TIME COUNTER
IHR = STRTHR
INA = STRTDA
160 ISEQNM = 1
SEQDA = IDA

[ KHEGIN TRAJECTORY CALCULATIONS

IF(IHR.LE.6,0R.IHR.GT.18)60T0 101
ISEQNM = 2
GOTO 104
101 IFC(IHRJLE.&S)YGOTO 104
ISEQDA = YDA + 1
104 UNIMAG = AVUMAG(ISEQNM,ISEQDA)
XLONG(1)> = SRCLNG
YLAT(1) = SRCLAT
X(1) = (WOLONG-SRCLNG)/DEGPKM(SRCLAT)
Y(1) = (SRCLAT-SCLAT)/DGPKM
WRITE(&4:2999)
29%v FORMAT(1HOy% TRAJECTORY DATA *//)
WRITEC(S623000) X1 pY{L) s XLONG(1) » YLAT(1)
000 FORHA{(* XX FB. 21X RkYRX s FB. 29 1X s RkXLONG=X,F8. 21Xy XYLAT=%,F8,2)
KOUNTI = 1

—

THE PROBLEM IS NOW INITIALIZED. REGIN CALCULATING
CONSECUTIVE POSITIONS

No 120 I=2y959

IW = IFIX{((UCLONG=XLONG(I~1))%40)/(UCLONG-ECLONG))>+1
Ju = IFIXCCCYLAT(I-1)~8CLAT)Y%*20)/(NCLAT-SCLAT) )+1

ICR = IFIX({(WOCLONG~XLONG(I~-1 ))%40)/(WCLONG-ECLONG) ) +1
JCR = IFIX(CCYLAT(I-1)~-5CLAT)%30)/(NCLAT-SCLAT))+1

IMAP = IFIXC((WCLONG~XLONG(I~13)%80)/(WCLONG~ECLONG)) +1
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= TEIXCCCYLAT(I~1)~6CLAT)X40) /(NCLAT-8CLAT) ) +1
NRITE(bi3070’IUrJWvICRrJCRyINAPrJMAPr IDAYIHR

EO20 FORMAT (R IW=k2 T2 2X o Rk JW=X 2» I292X»XICR=X%r12r2X v XJCR=X 129 2Xy

% ¥IMAP=Xy IZ22 22Xy XKJHAP=Xy I292X+XIDA =Xy I3+ 2X s XIHR=%,12)

GROUNDING CHECK
IF {MAF(IMAP»JHAF) JNELO) GOTO 140
WIND ARRAY CHECK
IF CWINDXY(IWyJW) ,LT.0) GOTD 140
CURRENT ARRAY CHECK
IF(CURRXY(ICRrJCR).LT+0) GOTO 140
DETERMINE IF BAROCLINIC CURRENT IS KNOWN
IF(IRAROC(ICR»JCR) LT.0) GOTO 140
DETERMINE LOCAL BAROCLINIC CURRENT VELOCITY
CALL CHNVCUR(IBARDC(ICRrsJCRY»BCUC,RCVC)
CHECK FOREBALDATA
IF(IWNDSEQ( ISEQNM» ISEQDA)Y +LT.0)GATO 450
LOOK-UP FATTERN NUMBER TYPE
NUMSEQ = IUNDSEQ( ISEQNM» ISEQDA)
DETERMINE LOCAL BAROTROPIC CURRENT VELOCITY
CALL CNVCUR(CURRXY(ICR»JCRyNUMSEQ)»BTUC,BTVC)
DETERMINE LOCAL WIND VELOCITY
CALL CNVUWNDCWINDXY ¢ IWy JW s NUMSER) »WUC WVE)
DETERMINE STRENGTH OF WIND FIELD
FLOSTR = WNDMAG/WHGSTN(NUMSEQR)
CHECK FOR BALDATA
IFCWINDTMC(IHRIDAY LLTL0)G0OTO 450
DETERMINE HOURLY WIND VELOCITY ATWIND STATION
CALL CNVWNDB(WINDTM(IHRXDA) s UWHR s VWHR)
DETERMINE WIND PERTURBATION VELOCITY AT WIND STATION
UWFERT = UUHR - FLDSTRRUWSTN{NUMSER)
VWFERT = VWHR - FLDSTRAVUSTN(NUMSEQ)

DECOMPOSE INTO ALONG AND LEFT PERPENDICULAR COMPONENTS
WALNGY = UVCTRW( 1+ ¢y NUMSEQ)XUWRERT + UVCTRW(2s 1y NUMSEQ) XVWPERT
WLEFTU = UVCTRU( 12 NUMSEQ)XUWPERT + UVCTRW(2,2,NUMSER ) XVWPERT

DETERMINE LOCAL WIND SPEED FOR TURBULENCE SCALE
WMGLOC = SQERT((WUCKXXk2) + (WVLX%2))

TREBSCL. IS NOW THE FOLLOWING RATIO OF THE UNWEIGHTEDFIELD VARIABLES

TRESCL = WMGLOC/UWMGSTN(NUMSEQR)
WALNGU = WALNGUXTRBSCL
WLEFTY = WLEFTUXTRBSCL
CALCULATE X+¥Y COMPONENTS OF ROTATED PERTURBATION VELOCITY
UWFERT = (WALNGUXWUC/WMGLDC) - (WLEFTUXWVC/WMGLOC)
VWFERT = (WALNGUXWVC/WMGLDC)Y + (WLEFTUXWUC/WMGLOC)

DETERMINE SYNTHESIZED LOCAL HOURLY WIND VELOCITY
WU = FLDSTR¥%WUC + UWPERT

WY = FLOSTR¥WVC + VWPERT
CHECK FOR EALI DATA
IF (CURRTM( IHR» IDA) JLT,QIBOTO 450
DETERMINE HOURLY CURRENT VELOCITY AT CURRENT STATION
CALL CHVCUR(CURRTM(IHR»IDA)sUCHRyVCHR)
DETERMINE CURRENT PERTURBATION VELOCITY AT CURRENT STATION
UCFERT = UCHFR - UBCSTN - (FLDSTR¥X2)%XUCSTN(NUMSEQ)
VEFERT = VCHR - VEBCSTN - (FLDSTRX¥2)XVCSTN(NUMSEQ)
DECOMFOSEINTO ALONG AND LEFT PERTURBATION COMPONENTS
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o 3

23030

»

110

3040

120
140
3044

CALNGU = UVCTRC( 1,1, NUMSEQ)XUCPERT + UVCTRC(2s1 yNUMSEQ)XVCFERT
CLEFTU = LWCTRCC1 » 2, NUMSEQ) XUCPERT + UVCTRC(2,2sNUMSEQR)XVCFERT
DETERMINE LOCAL BAROTROPIC CURRENT MAGNITUDE
CMGLOC = SART( (BTUCXX2) + (BTVCK%2))
TRESCL = CMGLOC/CMGSTN(NUMSEQ)
DETERMINE SCALED PERTURBATION COMPONENTS
CALNGU = TRESCLXCALNGU
CLEFTU = TRBSCLXCLEFTU
CALCULATE SYNTHESIZED LOCAL CURRENT PERTURBATION
UCFERT = (CALNGUXBTUC/CMGLOC) - (CLEFTUXBTVC/CMGLOC)
VCFERT = (CALNGUXBTVC/CMGLOC) + (CLEFTUXBTUC/CMGLOC)
DETERMINE SYNTHESIZED LOCAL CURRENT VELOCITY.
THE BAROCLINIC AND PERTURBATION COMPONENTS ARE SCALER
ALREADYy BUT THE BAROTROPIC. PORTION STILL REQUIRES AMPLIFICATION
CU = ECUC + UCPERT + (FLUSTR¥%2)XBTUC
CV = ECVC + VCPERT + (FLDSTRXX2)XBTUC
STORE VELOCITY DATAINTAPEB FOR STICK VECTOR DRAWINGS
U1=UCHRX100 ,
U2=RHCUCX100.,
U3=CU%100,
V1=UCHRX100.,
V2=RCVC¥100.
V3=CVX100,
WRITE(8,3029)U1yV1,UNHR VWHR yU25V25U3 U3, WU WY
FORMAT (10F8,3)
WRITEMISC. VARIABLES FOR DEBUG.
WRITE(6s3030)CUrCVyWU WYy BCUC, BCYCYBTUC,BTVC,
CALNGU»CLEFTU, TRESCL r FLOSTR
FORMAT(IX?12E10.3)
NOW UFDATE POSITION
X (1) = XCI~1) + 3,6%(CU + WNDFACKWU)
YCIY = Y(I=1) -+ 3,6K(CY + WNDFACKWY)
YLATCI) = YLATCI-1) + (Y(I)~Y{(I-1) YXDGPKM
XLONGCI) = XLONG(I=1) - (X(I)=X(I-1))XDEGPKM(YLAT(I))
"UPDATE KOUNTX TO INDICATE NEW POSITION DATA
KOUNTI = |
NOW UPDATE TIME
IHR =IHR + 1
TF(IHR.LE.24) GOTO 110
IDA = IDA + 1
IHR = YHR - 24
IFCIDA.GT.LASTDA) GOTO 140
IF(IDALEQ.LASTDA, AND, IHR.GT, 18) GOTO 140
WRITE(&r3040)0X(I)sY(Idy |
FORMAT (1X s XX (1) =X s FB. 292Xy KYCIDnK s FBo 292X XI=ky I3)
IFCIHR.NE.7) GOTO 112
ISEQNM = 2
WNDMAG = AVMAG(ISEQNMy ISEQDA)
GOTO 120
IF (IHRNE.19)60T0 120
ISEQNM = 1
ISEGDA = IDA + 1
WNIMAG = AVMAG (ISEGNM» ISQDA)
CONTINUE
WRITE(6r3044)
FORMAT(1HOy%X FORMATTED LISTING OF TAPE2 DATA %//)
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WRITE(6s3045)SCLAT » WCLONG s NCLAT » ECLONG

304% FORMATC 1Xs XSCLAT=%,FB, 252X XWCLONG=X s FB 425 2X s KNCLAT=XsF 842, 2X»

* XECLONG=#,F8,2)
KOUNTI = KOUNTI + 1
[0 142 I=1, KOUNTI
WRITE(2,3050)XCI) Y CI)
WRITEC&y3055IX(I) s Y(ID
3050 FORMAT(ZC(1XsFB.2))
3055 FORMAT(1X»XXCI)=XsFB,2,2Xr XY (I1)=XsFB,2)
142 CONTI NUE
STRTHR = STRTHR + IHRSEP
STRTDA = STRTDA + IDASEF
IF(STRTHR,LE,24) GO TO 143
STRTDA = STRTDA + 1
STRTHR = STRTHR - 24
143 IFC((STRTDA.GT.LASTDA)+OR.(STRTDA.EQ.LASTDA.AND.STRTHR.GT,18))
* GO TO 500
1DA = STRTDA
IHR = STRTHR
DO 144 I=1,940
X(1) = 9999,
Y(1) = 0,0
144 CONTINUE
GOTO 100
C
e
450 WRITE(4s4010)

4010° FORMAT(1XsX TIME SERIES DATA ERROR SEE LISTING *)
WRITE(6r4020) ISEQNMs ISEQDAr IHR s IDA

4020 FORMAT(1HOs% ISEQNM ¥sI4,X% ISEQDA XsI4r% IHR %»

1 I4rX IDA Xy 14/)
C PFRINT OUT DATAFIELDS
[0 455 I=1,90
HRITE(654030) (WINDTM(JsI)rJd=1s12)
WRITE(6y4030) (WINDTNCJy 1) rJ=13,24)
455 CONTINUE
D0 460 1=1,90
WRITECSs4040) (CURRTM(JrI)rJ=158)
WRITE(&r4040) (CURRTM(J»I) 3 J=9s16)
WRITE(&r4040) (CURRTMCJ 1) rJ=17,24)
440 CONTINUE
4030 FORMAT(1Xs1216)
4040 FORMAT (1X,818)
WRITE(4r4050)

4050 FORMAT(1HO,% WIND SEQUENCE ONE *//)
WRITE(4r4060) CIMNDSEQCLyd) rJ=1y30)
WRITE(6r4060) ( IUNDSEQ(1rJ) s J=31560)
WRITE(6s4060) (INNDSEQCLyJ)rJ=61190)

4040 FORMAT(1X»y3012)

WRITE(4r4070)

4070 FORMAT(1HO,»% WIND SEGUENCE TWO %//)
WRITE(6r4060) (IWUNDSEQ(2yJ)»J=1530)
WRITE(454060) CIUNDSEQC2,J)» J=31560)

GOTO %00
490 WRITE(&25000?
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G0

5000 FORMAT(1HOs%X START ‘DAY IS BEFORE DATA */)
300 STOF
END

REAL FUNCTION AVMAG(ILO»,IDA)
INTEGER WINDTM
DIMENSION U<12)yV(12)
COMMON/UWNDATA/WINDTM (24, 90)
DATA UryV/12%0.0512%0,.0/
DATA XNSAM/12.0/
IF(ILDL.EQ.2)GOTO 20
DD 15 | = 1+6
IF(WINDTMCIDA=1 s I+18) LTLOYXNSAM = XNSAM~1
IF(WINDTM(IDA~1y1+18),.LT.0)60TD 11
CALL CNVUNDC(WINRTM(IDA-1I+18):UCI)»V(I))
11 IFCWINDTMC(IDA? 1) .LT.0)XNSAN = XNSAM=-1
IFCWINDTMCIDAYIY.LT.0)GOTD 15
CALL CNVWND(C(UWINDTMC{IDA»I)»UCI+4)V(I+4))
15 CONTINUE
GOTO 50
20 DO 25 I = 1,12
IFCWINDTHC(IDA,I+4) LT 0)XNSAM = XNSAM-1
IF(WINDTM(IDA,I+6) JLT.OXGOTO 25
CALL CNVUND(WINDTM(IDA,I+6),U(CI) V(1))
25 CONTINUE
50 AVMAG = 0.0
DO 60 | =1y12
AVMAG = AVMAG + SART((UCIIXK2)F(V(II%%K2))/XNSAM
40 CONTINUE
RETURN
END

SUBROUTINE CNVWNID{(IVEL »UWrVUW)

USUR = FLOAT(IVEL-1000XIFIX(.001%FLOAT(IVEL) ))
USUR = (FLOAT(IVEL)-VSUR)X.001

UWw = USUR%.1 - 50.0

VW = VUSURX.1 ~ 50.0

RETURN

END

SUEROUﬂNE CNUCUR(ICUR:UP:U
VSUR FLOAT(ICUR- lOOOOXIFIX( +yOOO0LXFLOAT(ICURY))

USUR = (FLOAT(ICUR}-VSUR)Y¥*,0001
UC = (USUR-5000)%0.1
ucC (VSUR-50003%0.1
THIS RECREATES CURRENT | N ITS ORIGINAL UNITS WHICHUWAS
CM/SEC. NOW CONVERT TO M/SEC FOR USE RY FROGRAM,
UC = UCX1.0E-2
Ve = VCX1.0E-2
RETURN
END

i
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